Articles | Volume 10, issue 4
https://doi.org/10.5194/tc-10-1721-2016
https://doi.org/10.5194/tc-10-1721-2016
Research article
 | 
11 Aug 2016
Research article |  | 11 Aug 2016

Evaluation of air–soil temperature relationships simulated by land surface models during winter across the permafrost region

Wenli Wang, Annette Rinke, John C. Moore, Duoying Ji, Xuefeng Cui, Shushi Peng, David M. Lawrence, A. David McGuire, Eleanor J. Burke, Xiaodong Chen, Bertrand Decharme, Charles Koven, Andrew MacDougall, Kazuyuki Saito, Wenxin Zhang, Ramdane Alkama, Theodore J. Bohn, Philippe Ciais, Christine Delire, Isabelle Gouttevin, Tomohiro Hajima, Gerhard Krinner, Dennis P. Lettenmaier, Paul A. Miller, Benjamin Smith, Tetsuo Sueyoshi, and Artem B. Sherstiukov

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Wenli Wang on behalf of the Authors (20 Jun 2016)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (21 Jun 2016) by Julia Boike
RR by Anonymous Referee #1 (04 Jul 2016)
RR by Anonymous Referee #2 (06 Jul 2016)
ED: Publish subject to minor revisions (Editor review) (12 Jul 2016) by Julia Boike
AR by Wenli Wang on behalf of the Authors (20 Jul 2016)  Author's response   Manuscript 
ED: Publish subject to technical corrections (21 Jul 2016) by Julia Boike
AR by Wenli Wang on behalf of the Authors (23 Jul 2016)  Manuscript 
Download
Short summary
The winter snow insulation is a key process for air–soil temperature coupling and is relevant for permafrost simulations. Differences in simulated air–soil temperature relationships and their modulation by climate conditions are found to be related to the snow model physics. Generally, models with better performance apply multilayer snow schemes.