Articles | Volume 11, issue 3
https://doi.org/10.5194/tc-11-1333-2017
https://doi.org/10.5194/tc-11-1333-2017
Research article
 | 
09 Jun 2017
Research article |  | 09 Jun 2017

Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea

Ira Leifer, Denis Chernykh, Natalia Shakhova, and Igor Semiletov

Related authors

Long-term atmospheric emissions for the Coal Oil Point natural marine hydrocarbon seep field, offshore California
Ira Leifer, Christopher Melton, and Donald R. Blake
Atmos. Chem. Phys., 21, 17607–17629, https://doi.org/10.5194/acp-21-17607-2021,https://doi.org/10.5194/acp-21-17607-2021, 2021
Short summary
Satellite ice extent, sea surface temperature, and atmospheric methane trends in the Barents and Kara Seas
Ira Leifer, F. Robert Chen, Thomas McClimans, Frank Muller Karger, and Leonid Yurganov
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-237,https://doi.org/10.5194/tc-2018-237, 2018
Revised manuscript not accepted
Short summary
Satellite ice extent, sea surface temperature, and atmospheric methane trends in the Barents and Kara seas
Ira Leifer, F. Robert Chen, Thomas McClimans, Frank Muller Karger, and Leonid Yurganov
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-75,https://doi.org/10.5194/tc-2018-75, 2018
Revised manuscript has not been submitted
Short summary
Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field
Ira Leifer, Christopher Melton, Marc L. Fischer, Matthew Fladeland, Jason Frash, Warren Gore, Laura T. Iraci, Josette E. Marrero, Ju-Mee Ryoo, Tomoaki Tanaka, and Emma L. Yates
Atmos. Meas. Tech., 11, 1689–1705, https://doi.org/10.5194/amt-11-1689-2018,https://doi.org/10.5194/amt-11-1689-2018, 2018
Short summary
Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements
Sven Krautwurst, Konstantin Gerilowski, Haflidi H. Jonsson, David R. Thompson, Richard W. Kolyer, Laura T. Iraci, Andrew K. Thorpe, Markus Horstjann, Michael Eastwood, Ira Leifer, Samuel A. Vigil, Thomas Krings, Jakob Borchardt, Michael Buchwitz, Matthew M. Fladeland, John P. Burrows, and Heinrich Bovensmann
Atmos. Meas. Tech., 10, 3429–3452, https://doi.org/10.5194/amt-10-3429-2017,https://doi.org/10.5194/amt-10-3429-2017, 2017
Short summary

Related subject area

Climate Interactions
Projection of snowfall extremes in the French Alps as a function of elevation and global warming level
Erwan Le Roux, Guillaume Evin, Raphaëlle Samacoïts, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 17, 4691–4704, https://doi.org/10.5194/tc-17-4691-2023,https://doi.org/10.5194/tc-17-4691-2023, 2023
Short summary
Forced and internal components of observed Arctic sea-ice changes
Jakob Simon Dörr, David B. Bonan, Marius Årthun, Lea Svendsen, and Robert C. J. Wills
The Cryosphere, 17, 4133–4153, https://doi.org/10.5194/tc-17-4133-2023,https://doi.org/10.5194/tc-17-4133-2023, 2023
Short summary
Changes in March mean snow water equivalent since the mid-20th century and the contributing factors in reanalyses and CMIP6 climate models
Jouni Räisänen
The Cryosphere, 17, 1913–1934, https://doi.org/10.5194/tc-17-1913-2023,https://doi.org/10.5194/tc-17-1913-2023, 2023
Short summary
Climatic control of the surface mass balance of the Patagonian Icefields
Tomás Carrasco-Escaff, Maisa Rojas, René Darío Garreaud, Deniz Bozkurt, and Marius Schaefer
The Cryosphere, 17, 1127–1149, https://doi.org/10.5194/tc-17-1127-2023,https://doi.org/10.5194/tc-17-1127-2023, 2023
Short summary
Spatio-temporal reconstruction of winter glacier mass balance in the Alps, Scandinavia, Central Asia and western Canada (1981–2019) using climate reanalyses and machine learning
Matteo Guidicelli, Matthias Huss, Marco Gabella, and Nadine Salzmann
The Cryosphere, 17, 977–1002, https://doi.org/10.5194/tc-17-977-2023,https://doi.org/10.5194/tc-17-977-2023, 2023
Short summary

Cited articles

Archer, D. and Buffett, B.: Time-dependent response of the global ocean clathrate reservoir to climatic and anthropogenic forcing, Geochem. Geophys. Geosyst., 6, Q03002, https://doi.org/10.1029/2004GC000854, 2005.
Bauch, H. A., Mueller-Lupp, T., Taldenkova, E., Spielhagen, R. F., Kassens, H., Grootes, P. M., Thiede, J., Heinemeier, J., and Petryashov, V. V.: Chronology of the Holocene transgression at the North Siberian margin, Global Planet. Change, 31, 125–139, 2001.
Biastoch, A., Treude, T., Rupke, L. H., Riebesell, U., Roth, C., Burwicz, E. B., Park, W., Latif, M., Boning, C. w., Madec, G., and Wallman, K.: Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification, Geophys. Res. Lett., 38, L08602, https://doi.org/10.1029/2011GL047222, 2011.
Clark, J. F., Washburn, L., Hornafius, J. S., and Luyendyk, B. P.: Dissolved hydrocarbon flux from natural marine seeps to the southern California Bight, J. Geophys. Res., 105, 11509–11522, https://doi.org/10.1029/2000JC000259, 2000.
Clark, J. F., Schwager, K., and Washburn, L.: Variability of gas composition and flux intensity in natural marine hydrocarbon seeps, New Energy Development and Technology (EDT) Working Paper 008, UCEI, 15 pp., 2005.
Download
Short summary
Vast Arctic methane deposits may alter global climate and require remote sensing (RS) to map. Sonar has great promise, but quantitative inversion based on theory is challenged by multiple bubble acoustical scattering in plumes. We demonstrate use of a real-world in situ bubble plume calibration using a bubble model to correct for differences in the calibration and seep plumes. Spatial seep sonar maps were then used to improve understanding of subsurface geologic controls.