Articles | Volume 11, issue 2
https://doi.org/10.5194/tc-11-891-2017
https://doi.org/10.5194/tc-11-891-2017
Research article
 | 
07 Apr 2017
Research article |  | 07 Apr 2017

Determination of snowmaking efficiency on a ski slope from observations and modelling of snowmaking events and seasonal snow accumulation

Pierre Spandre, Hugues François, Emmanuel Thibert, Samuel Morin, and Emmanuelle George-Marcelpoil

Related authors

Winter tourism under climate change in the Pyrenees and the French Alps: relevance of snowmaking as a technical adaptation
Pierre Spandre, Hugues François, Deborah Verfaillie, Marc Pons, Matthieu Vernay, Matthieu Lafaysse, Emmanuelle George, and Samuel Morin
The Cryosphere, 13, 1325–1347, https://doi.org/10.5194/tc-13-1325-2019,https://doi.org/10.5194/tc-13-1325-2019, 2019
Short summary

Related subject area

Seasonal Snow
Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry
Zachary Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich
The Cryosphere, 18, 575–592, https://doi.org/10.5194/tc-18-575-2024,https://doi.org/10.5194/tc-18-575-2024, 2024
Short summary
Variability and drivers of winter near-surface temperatures over boreal and tundra landscapes
Vilna Tyystjärvi, Pekka Niittynen, Julia Kemppinen, Miska Luoto, Tuuli Rissanen, and Juha Aalto
The Cryosphere, 18, 403–423, https://doi.org/10.5194/tc-18-403-2024,https://doi.org/10.5194/tc-18-403-2024, 2024
Short summary
Spatiotemporal snow water storage uncertainty in the midlatitude American Cordillera
Yiwen Fang, Yufei Liu, Dongyue Li, Haorui Sun, and Steven A. Margulis
The Cryosphere, 17, 5175–5195, https://doi.org/10.5194/tc-17-5175-2023,https://doi.org/10.5194/tc-17-5175-2023, 2023
Short summary
Evaluation of snow cover properties in ERA5 and ERA5-Land with several satellite-based datasets in the Northern Hemisphere in spring 1982–2018
Kerttu Kouki, Kari Luojus, and Aku Riihelä
The Cryosphere, 17, 5007–5026, https://doi.org/10.5194/tc-17-5007-2023,https://doi.org/10.5194/tc-17-5007-2023, 2023
Short summary
Multi-decadal analysis of past winter temperature, precipitation and snow cover data in the European Alps from reanalyses, climate models and observational datasets
Diego Monteiro and Samuel Morin
The Cryosphere, 17, 3617–3660, https://doi.org/10.5194/tc-17-3617-2023,https://doi.org/10.5194/tc-17-3617-2023, 2023
Short summary

Cited articles

Armstrong, R. and Brun, E.: Snow and climate: physical processes, surface energy exchange and modeling, Polar Res., 29, 461–462, https://doi.org/10.3402/polar.v29i3.6091, 2008.
Bergstrom, K. and Ekeland, A.: Effect of trail design and grooming on the incidence of injuries at alpine ski areas, Brit. J. Sport. Med., 38, 264–268, https://doi.org/10.1136/bjsm.2002.000270, 2004.
Bevington, P. R. and Robinson, D. K.: Data reduction and error analysis, McGraw-Hill, 3rd Edn., available at: http://experimentationlab.berkeley.edu/sites/default/files/pdfs/Bevington.pdf (last access: 4 April 2017), 2003.
Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol., 38, 13–22, 1992.
Damm, A., Koeberl, J., and Prettenthaler, F.: Does artificial snow production pay under future climate conditions? – A case study for a vulnerable ski area in Austria, Tourism Manage., 43, 8–21, https://doi.org/10.1016/j.tourman.2014.01.009, 2014.
Download
Short summary
The production of machine-made snow is generalized in ski resorts and represents the most common adaptation method to mitigate effects of climate variability and its projected changes. However, the actual snow mass that can be recovered from a given water mass used for snowmaking remains poorly known. All results were consistent with 60 % (±10 %) of the water mass found as snow within the edge of the ski slope, with most of the lost fraction of water being due to site-dependent characteristics.