Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
The Cryosphere, 6, 353-363, 2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
27 Mar 2012
Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula
P. Kuipers Munneke1, M. R. van den Broeke1, J. C. King2, T. Gray2, and C. H. Reijmer1 1Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlands
2British Antarctic Survey, National Environmental Research Council, Cambridge, UK
Abstract. Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), which includes melt energy. The two AWSs are separated by about 70 km in the north–south direction, and both the near-surface meteorology and the SEB show similarities, although small differences in all components (most notably the melt flux) can be seen. The impact of subsurface absorption of shortwave radiation on melt and snow temperature is significant, and discussed. In winter, longwave cooling of the surface is entirely compensated by a downward turbulent transport of sensible heat. In summer, the positive net radiative flux is compensated by melt, and quite frequently by upward turbulent diffusion of heat and moisture, leading to sublimation and weak convection over the ice shelf. The month of November 2010 is highlighted, when strong westerly flow over the Antarctic Peninsula led to a dry and warm föhn wind over the ice shelf, resulting in warm and sunny conditions. Under these conditions the increase in shortwave and sensible heat fluxes is larger than the decrease of net longwave and latent heat fluxes, providing energy for significant melt.

Citation: Kuipers Munneke, P., van den Broeke, M. R., King, J. C., Gray, T., and Reijmer, C. H.: Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula, The Cryosphere, 6, 353-363, doi:10.5194/tc-6-353-2012, 2012.
Publications Copernicus