Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
The Cryosphere, 7, 1753-1768, 2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
15 Nov 2013
Recent extreme light sea ice years in the Canadian Arctic Archipelago: 2011 and 2012 eclipse 1998 and 2007
S. E. L. Howell1, T. Wohlleben2, A. Komarov3,4, L. Pizzolato5, and C. Derksen1 1Climate Research Division, Environment Canada, Toronto, Canada
2Canadian Ice Service, Environment Canada, Ottawa, Canada
3Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Canada
4Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada
5Department of Geography and Environmental Management, University of Waterloo, Waterloo, Canada
Abstract. Remarkably low mean September sea ice area in the Canadian Arctic Archipelago (CAA) was observed in 2011 (146 × 103 km2), a record-breaking level that was nearly exceeded in 2012 (150 × 103 km2). These values were lower than previous September records set in 1998 (200 × 103 km2) and 2007 (220 × 103 km2), and are ∼60% lower than the 1981–2010 mean September climatology. In this study, the processes contributing to the extreme light years of 2011 and 2012 were investigated, compared to previous extreme minima of 1998 and 2007, and contrasted against historic summer seasons with above average September ice area. The 2011 minimum was associated with positive June through September (JJAS) surface air temperature (SAT) and net solar radiation (K*) anomalies that facilitated rapid melt, coupled with atmospheric circulation that restricted multi-year ice (MYI) inflow from the Arctic Ocean into the CAA. The 2012 minimum was also associated with positive JJAS SAT and K* anomalies with coincident rapid melt, but further ice decline was temporarily mitigated by atmospheric circulation which drove Arctic Ocean MYI inflow into the CAA. Atmospheric circulation was comparable between 2011 and 1998 (impeding Arctic Ocean MYI inflow) and 2012 and 2007 (inducing Arctic Ocean MYI inflow). However, preconditioning was more apparent leading up to 2011 and 2012 than 1998 and 2007. The rapid melt process in 2011 and 2012 was more intense than observed in 1998 and 2007 because of the thinner ice cover being more susceptible to anomalous thermodynamic forcing. The thinner sea ice cover within the CAA in recent years has also helped counteract the processes that facilitate extreme heavy ice years. The recent extreme light years within the CAA are associated with a longer navigation season within the Northwest Passage.

Citation: Howell, S. E. L., Wohlleben, T., Komarov, A., Pizzolato, L., and Derksen, C.: Recent extreme light sea ice years in the Canadian Arctic Archipelago: 2011 and 2012 eclipse 1998 and 2007, The Cryosphere, 7, 1753-1768, doi:10.5194/tc-7-1753-2013, 2013.
Publications Copernicus