Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 5.516 IF 5.516
  • IF 5-year<br/> value: 5.591 IF 5-year
  • SNIP value: 1.403 SNIP 1.403
  • IPP value: 4.288 IPP 4.288
  • SJR value: 3.247 SJR 3.247
  • h5-index value: 34 h5-index 34
The Cryosphere, 7, 469-489, 2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research Article
14 Mar 2013
Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR
X. Fettweis1, B. Franco1, M. Tedesco2, J. H. van Angelen3, J. T. M. Lenaerts3, M. R. van den Broeke3, and H. Gallée4
1Department of Geography, University of Liege, Liege, Belgium
2The City College of New York, The City University of New York, New York, NY, USA
3Institute for Marine and Atmospheric research (IMAU), Utrecht University, the Netherlands
4Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE), Grenoble, France

Abstract. To estimate the sea level rise (SLR) originating from changes in surface mass balance (SMB) of the Greenland ice sheet (GrIS), we present 21st century climate projections obtained with the regional climate model MAR (Modèle Atmosphérique Régional), forced by output of three CMIP5 (Coupled Model Intercomparison Project Phase 5) general circulation models (GCMs). Our results indicate that in a warmer climate, mass gain from increased winter snowfall over the GrIS does not compensate mass loss through increased meltwater run-off in summer. Despite the large spread in the projected near-surface warming, all the MAR projections show similar non-linear increase of GrIS surface melt volume because no change is projected in the general atmospheric circulation over Greenland. By coarsely estimating the GrIS SMB changes from GCM output, we show that the uncertainty from the GCM-based forcing represents about half of the projected SMB changes. In 2100, the CMIP5 ensemble mean projects a GrIS SMB decrease equivalent to a mean SLR of +4 ± 2 cm and +9 ± 4 cm for the RCP (Representative Concentration Pathways) 4.5 and RCP 8.5 scenarios respectively. These estimates do not consider the positive melt–elevation feedback, although sensitivity experiments using perturbed ice sheet topographies consistent with the projected SMB changes demonstrate that this is a significant feedback, and highlight the importance of coupling regional climate models to an ice sheet model. Such a coupling will allow the assessment of future response of both surface processes and ice-dynamic changes to rising temperatures, as well as their mutual feedbacks.

Citation: Fettweis, X., Franco, B., Tedesco, M., van Angelen, J. H., Lenaerts, J. T. M., van den Broeke, M. R., and Gallée, H.: Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR, The Cryosphere, 7, 469-489, doi:10.5194/tc-7-469-2013, 2013.
Search TC
Final Revised Paper
Discussion Paper