Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 10, issue 3
The Cryosphere, 10, 1003–1020, 2016
https://doi.org/10.5194/tc-10-1003-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 10, 1003–1020, 2016
https://doi.org/10.5194/tc-10-1003-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 May 2016

Research article | 13 May 2016

Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica

Anna Ruth W. Halberstadt et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Ruth Halberstadt on behalf of the Authors (26 Apr 2016)  Author's response    Manuscript
ED: Publish as is (29 Apr 2016) by Chris R. Stokes
AR by Anna Ruth Halberstadt on behalf of the Authors (30 Apr 2016)  Author's response    Manuscript
Publications Copernicus
Download
Short summary
Geomorphic features on the Ross Sea sea floor provide a record of ice-sheet behaviour during the Last Glacial Maximum and subsequent retreat. Based on extensive mapping of these glacial landforms, a large embayment formed in the eastern Ross Sea. This was followed by complex, late-stage retreat in the western Ross Sea where banks stabilised the ice sheet. Physiography and sea floor geology act as regional controls on ice-sheet dynamics across the Ross Sea.
Geomorphic features on the Ross Sea sea floor provide a record of ice-sheet behaviour during the...
Citation