Articles | Volume 10, issue 3
https://doi.org/10.5194/tc-10-1181-2016
https://doi.org/10.5194/tc-10-1181-2016
Research article
 | 
01 Jun 2016
Research article |  | 01 Jun 2016

Calibration of a non-invasive cosmic-ray probe for wide area snow water equivalent measurement

Mark J. P. Sigouin and Bing C. Si

Related authors

MOIST: a MATLAB-based fully coupled one-dimensional isotope and soil water transport model
Han Fu, Eric J. Neil, Huijie Li, and Bingcheng Si
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-422,https://doi.org/10.5194/hess-2022-422, 2023
Manuscript not accepted for further review
Short summary
Improved runoff simulations for a highly varying soil depth and complex terrain watershed in the Loess Plateau with the Community Land Model version 5
Jiming Jin, Lei Wang, Jie Yang, Bingcheng Si, and Guo-Yue Niu
Geosci. Model Dev., 15, 3405–3416, https://doi.org/10.5194/gmd-15-3405-2022,https://doi.org/10.5194/gmd-15-3405-2022, 2022
Short summary
Technical note: Evaporating water is different from bulk soil water in δ2H and δ18O and has implications for evaporation calculation
Hongxiu Wang, Jingjing Jin, Buli Cui, Bingcheng Si, Xiaojun Ma, and Mingyi Wen
Hydrol. Earth Syst. Sci., 25, 5399–5413, https://doi.org/10.5194/hess-25-5399-2021,https://doi.org/10.5194/hess-25-5399-2021, 2021
Short summary
Technical Note: Improved partial wavelet coherency for understanding scale-specific and localized bivariate relationships in geosciences
Wei Hu and Bing Si
Hydrol. Earth Syst. Sci., 25, 321–331, https://doi.org/10.5194/hess-25-321-2021,https://doi.org/10.5194/hess-25-321-2021, 2021
Short summary
Signal processing for in situ detection of effective heat pulse probe spacing radius as the basis of a self-calibrating heat pulse probe
Nicholas J. Kinar, John W. Pomeroy, and Bing Si
Geosci. Instrum. Method. Data Syst., 9, 293–315, https://doi.org/10.5194/gi-9-293-2020,https://doi.org/10.5194/gi-9-293-2020, 2020
Short summary

Related subject area

Seasonal Snow
Spatiotemporal snow water storage uncertainty in the midlatitude American Cordillera
Yiwen Fang, Yufei Liu, Dongyue Li, Haorui Sun, and Steven A. Margulis
The Cryosphere, 17, 5175–5195, https://doi.org/10.5194/tc-17-5175-2023,https://doi.org/10.5194/tc-17-5175-2023, 2023
Short summary
Evaluation of snow cover properties in ERA5 and ERA5-Land with several satellite-based datasets in the Northern Hemisphere in spring 1982–2018
Kerttu Kouki, Kari Luojus, and Aku Riihelä
The Cryosphere, 17, 5007–5026, https://doi.org/10.5194/tc-17-5007-2023,https://doi.org/10.5194/tc-17-5007-2023, 2023
Short summary
Multi-decadal analysis of past winter temperature, precipitation and snow cover data in the European Alps from reanalyses, climate models and observational datasets
Diego Monteiro and Samuel Morin
The Cryosphere, 17, 3617–3660, https://doi.org/10.5194/tc-17-3617-2023,https://doi.org/10.5194/tc-17-3617-2023, 2023
Short summary
Snow Water Equivalent Retrieval Over Idaho, Part B: Using L-band UAVSAR Repeat-Pass Interferometry
Zachary Marshall Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-127,https://doi.org/10.5194/tc-2023-127, 2023
Revised manuscript accepted for TC
Short summary
Spatially continuous snow depth mapping by aeroplane photogrammetry for annual peak of winter from 2017 to 2021 in open areas
Leon J. Bührle, Mauro Marty, Lucie A. Eberhard, Andreas Stoffel, Elisabeth D. Hafner, and Yves Bühler
The Cryosphere, 17, 3383–3408, https://doi.org/10.5194/tc-17-3383-2023,https://doi.org/10.5194/tc-17-3383-2023, 2023
Short summary

Cited articles

Archer, D. and Stewart, D.: The installation and use of a snow pillow to monitor snow water equivalent, Water Environ. J., 9, 221–230, 1995.
Desilets, D. and Zreda, M.: Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in situ cosmogenic dating, Earth Planet. Sci. Lett., 206, 21–42, 2003.
Desilets, D. and Zreda, M.: Footprint diameter for a cosmic-ray soil moisture probe: Theory and Monte Carlo simulations, Water Resour. Res., 49, 3566–3575, 2013.
Desilets, D., Zreda, M., and Ferré, T. P. A.: Nature's neutron probe: Land surface hydrology at an elusive scale with cosmic rays, Water Resour. Res., 46, 1–7, 2010.
Dietz, A. J., Kuenzer, C., Gessner, U., and Dech, S.: Remote sensing of snow – a review of available methods, Int. J. Remote Sens., 33, 4094–4134, 2012.
Download
Short summary
The cosmic-ray soil moisture probe (CRP) uses the natural above ground neutron intensity to measure soil water content at a landscape scale. The goal of our research was to use the CRP to monitor how much water is in snowpacks, since snow and soil water affect neutron intensity similarly. We developed a relationship between neutron intensity and snow water. We used the relationship to estimate snow water non-invasively in an area of ~ 300 m radius using neutron intensity readings from the CRP.