Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 10, issue 4
The Cryosphere, 10, 1433–1448, 2016
https://doi.org/10.5194/tc-10-1433-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 10, 1433–1448, 2016
https://doi.org/10.5194/tc-10-1433-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Jul 2016

Research article | 11 Jul 2016

Glacier melting and precipitation trends detected by surface area changes in Himalayan ponds

Franco Salerno et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Franco Salerno on behalf of the Authors (14 Jun 2016)  Author's response    Manuscript
ED: Publish as is (15 Jun 2016) by G. Hilmar Gudmundsson
Publications Copernicus
Download
Short summary
This contribution shows that the surface area variations of unconnected glacial ponds, i.e. ponds not directly connected to glacier ice, can be considered as suitable proxies for detecting past changes in the main hydrological components of the water balance (glacier melt, precipitation, evaporation) on the south side of Mt Everest.
This contribution shows that the surface area variations of unconnected glacial ponds, i.e....
Citation