Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 10, issue 4
The Cryosphere, 10, 1449-1462, 2016
https://doi.org/10.5194/tc-10-1449-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 10, 1449-1462, 2016
https://doi.org/10.5194/tc-10-1449-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Jul 2016

Research article | 12 Jul 2016

Coastal dynamics and submarine permafrost in shallow water of the central Laptev Sea, East Siberia

Pier Paul Overduin1, Sebastian Wetterich1, Frank Günther1, Mikhail N. Grigoriev2, Guido Grosse1, Lutz Schirrmeister1, Hans-Wolfgang Hubberten1, and Aleksandr Makarov3 Pier Paul Overduin et al.
  • 1Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Potsdam, Germany
  • 2Mel'nikov Permafrost Institute, SB RAS, Yakutsk, Russia
  • 3Arctic and Antarctic Research Institute, St. Petersburg, Russia

Abstract. Coastal erosion and flooding transform terrestrial landscapes into marine environments. In the Arctic, these processes inundate terrestrial permafrost with seawater and create submarine permafrost. Permafrost begins to warm under marine conditions, which can destabilize the sea floor and may release greenhouse gases. We report on the transition of terrestrial to submarine permafrost at a site where the timing of inundation can be inferred from the rate of coastline retreat. On Muostakh Island in the central Laptev Sea, East Siberia, changes in annual coastline position have been measured for decades and vary highly spatially. We hypothesize that these rates are inversely related to the inclination of the upper surface of submarine ice-bonded permafrost (IBP) based on the consequent duration of inundation with increasing distance from the shoreline. We compared rapidly eroding and stable coastal sections of Muostakh Island and find permafrost-table inclinations, determined using direct current resistivity, of 1 and 5%, respectively. Determinations of submarine IBP depth from a drilling transect in the early 1980s were compared to resistivity profiles from 2011. Based on borehole observations, the thickness of unfrozen sediment overlying the IBP increased from 0 to 14m below sea level with increasing distance from the shoreline. The geoelectrical profiles showed thickening of the unfrozen sediment overlying ice-bonded permafrost over the 28 years since drilling took place. We use geoelectrical estimates of IBP depth to estimate permafrost degradation rates since inundation. Degradation rates decreased from over 0.4ma−1 following inundation to around 0.1ma−1 at the latest after 60 to 110 years and remained constant at this level as the duration of inundation increased to 250 years. We suggest that long-term rates are lower than these values, as the depth to the IBP increases and thermal and porewater solute concentration gradients over depth decrease. For the study region, recent increases in coastal erosion rate and changes in benthic temperature and salinity regimes are expected to affect the depth to submarine permafrost, leading to coastal regions with shallower IBP.

Please read the corrigendum first before accessing the article.
Publications Copernicus
Download
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
How fast does permafrost warm up and thaw after it is covered by the sea? Ice-rich permafrost in the Laptev Sea, Siberia, is rapidly eroded by warm air and waves. We used a floating electrical technique to measure the depth of permafrost thaw below the sea, and compared it to 60 years of coastline retreat and permafrost depths from drilling 30 years ago. Thaw is rapid right after flooding of the land and slows over time. The depth of permafrost is related to how fast the coast retreats.
How fast does permafrost warm up and thaw after it is covered by the sea? Ice-rich permafrost in...
Citation
Share