Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 10, issue 1 | Copyright
The Cryosphere, 10, 15-27, 2016
https://doi.org/10.5194/tc-10-15-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Jan 2016

Research article | 15 Jan 2016

Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods

A. Pope et al.
Related authors
Extracting recent short-term glacier velocity evolution over Southern Alaska from a large collection of Landsat data
Bas Altena, Ted Scambos, Mark Fahnestock, and Andreas Kääb
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-66,https://doi.org/10.5194/tc-2018-66, 2018
Manuscript under review for TC
Brief communication: Unabated wastage of the Juneau and Stikine icefields (southeast Alaska) in the early 21st century
Etienne Berthier, Christopher Larsen, William J. Durkin, Michael J. Willis, and Matthew E. Pritchard
The Cryosphere, 12, 1523-1530, https://doi.org/10.5194/tc-12-1523-2018,https://doi.org/10.5194/tc-12-1523-2018, 2018
Changes in flow of Crosson and Dotson ice shelves, West Antarctica, in response to elevated melt
David A. Lilien, Ian Joughin, Benjamin Smith, and David E. Shean
The Cryosphere, 12, 1415-1431, https://doi.org/10.5194/tc-12-1415-2018,https://doi.org/10.5194/tc-12-1415-2018, 2018
Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years
Alex S. Gardner, Geir Moholdt, Ted Scambos, Mark Fahnstock, Stefan Ligtenberg, Michiel van den Broeke, and Johan Nilsson
The Cryosphere, 12, 521-547, https://doi.org/10.5194/tc-12-521-2018,https://doi.org/10.5194/tc-12-521-2018, 2018
GPS-derived estimates of surface mass balance and ocean-induced basal melt for Pine Island Glacier ice shelf, Antarctica
David E. Shean, Knut Christianson, Kristine M. Larson, Stefan R. M. Ligtenberg, Ian R. Joughin, Ben E. Smith, C. Max Stevens, Mitchell Bushuk, and David M. Holland
The Cryosphere, 11, 2655-2674, https://doi.org/10.5194/tc-11-2655-2017,https://doi.org/10.5194/tc-11-2655-2017, 2017
Related subject area
Remote Sensing
A new tracking algorithm for sea ice age distribution estimation
Anton Andreevich Korosov, Pierre Rampal, Leif Toudal Pedersen, Roberto Saldo, Yufang Ye, Georg Heygster, Thomas Lavergne, Signe Aaboe, and Fanny Girard-Ardhuin
The Cryosphere, 12, 2073-2085, https://doi.org/10.5194/tc-12-2073-2018,https://doi.org/10.5194/tc-12-2073-2018, 2018
Automated detection of ice cliffs within supraglacial debris cover
Sam Herreid and Francesca Pellicciotti
The Cryosphere, 12, 1811-1829, https://doi.org/10.5194/tc-12-1811-2018,https://doi.org/10.5194/tc-12-1811-2018, 2018
Warm winter, thin ice?
Julienne C. Stroeve, David Schroder, Michel Tsamados, and Daniel Feltham
The Cryosphere, 12, 1791-1809, https://doi.org/10.5194/tc-12-1791-2018,https://doi.org/10.5194/tc-12-1791-2018, 2018
Seasonal variations of the backscattering coefficient measured by radar altimeters over the Antarctic Ice Sheet
Fifi Ibrahime Adodo, Frédérique Remy, and Ghislain Picard
The Cryosphere, 12, 1767-1778, https://doi.org/10.5194/tc-12-1767-2018,https://doi.org/10.5194/tc-12-1767-2018, 2018
Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data
Sanggyun Lee, Hyun-cheol Kim, and Jungho Im
The Cryosphere, 12, 1665-1679, https://doi.org/10.5194/tc-12-1665-2018,https://doi.org/10.5194/tc-12-1665-2018, 2018
Cited articles
Arnold, N. S., Banwell, A. F., and Willis, I. C.: High-resolution modelling of the seasonal evolution of surface water storage on the Greenland Ice Sheet, The Cryosphere, 8, 1149–1160, https://doi.org/10.5194/tc-8-1149-2014, 2014.
Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes, Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694, 2013.
Banwell, A. F., Caballero, M., Arnold, N. S., Glasser, N., Cathles, L. M., and MacAyeal, D. R.: Supraglacial lakes on the Larsen B Ice Shelf, Antarctica, and at Paakitsoq, W. Greenland: a comparative study, Ann. Glaciol., 55, 1–8, 2014.
Barsi, J. A., Lee, K., Kvaran, G., Markham, B. L., and Pedelty, J. A.: The Spectral Response of the Landsat-8 Operational Land Imager, Remote Sens., 6, 10232–10251, https://doi.org/10.3390/rs61010232, 2014.
Berk, A., Anderson, G. P., Acharya, P. K., Bernstein, L. S., Muratov, L., Lee, J., Fox, M., Adler-Golden, S. M., Chetwynd, J. H., Hoke, M. L., Lockwood, R. B., Gardner, J. A., Cooley, T. W., Borel, C. C., and Lewis, P. E.: MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update, edited by: Shen, S. S. and Lewis, P. E., 662–667, 2005.
Publications Copernicus
Download
Short summary
Liquid water stored on the surface of ice sheets and glaciers, such as that in surface (supraglacial) lakes, plays a key role in the glacial hydrological system. Multispectral remote sensing can be used to detect lakes and estimate their depth. Here, we use in situ data to assess lake depth retrieval using the recently launched Landsat 8. We validate Landsat 8-derived depths and provide suggestions for future applications. We apply our method to a case study are in Greenland for summer 2014.
Liquid water stored on the surface of ice sheets and glaciers, such as that in surface...
Citation
Share