Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 10, issue 1
The Cryosphere, 10, 159–177, 2016
https://doi.org/10.5194/tc-10-159-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Interactions between climate change and the Cryosphere: SVALI,...

The Cryosphere, 10, 159–177, 2016
https://doi.org/10.5194/tc-10-159-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Jan 2016

Research article | 19 Jan 2016

Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and lidar data – Case study from Drangajökull ice cap, NW Iceland

E. Magnússon et al.
Viewed  
Total article views: 2,881 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,055 1,739 87 2,881 241 102 111
  • HTML: 1,055
  • PDF: 1,739
  • XML: 87
  • Total: 2,881
  • Supplement: 241
  • BibTeX: 102
  • EndNote: 111
Views and downloads (calculated since 09 Sep 2015)
Cumulative views and downloads (calculated since 09 Sep 2015)
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 15 Dec 2019
Publications Copernicus
Download
Short summary
We demonstrate the opportunities given by high resolution digital elevation models (DEMs) to improve procedures for obtaining mass balance records from archives of aerial photographs. We also describe a geostatistical approach to estimate uncertainty of elevation changes derived by differencing DEMs. This method is more statistically robust than other described in the literature. Our study highlights a common tendency of overestimating this uncertainty, downgrading geodetic mass balance records.
We demonstrate the opportunities given by high resolution digital elevation models (DEMs) to...
Citation