Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 10, issue 4
The Cryosphere, 10, 1739–1752, 2016
https://doi.org/10.5194/tc-10-1739-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Mass balance of the Greenland Ice Sheet

The Cryosphere, 10, 1739–1752, 2016
https://doi.org/10.5194/tc-10-1739-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Aug 2016

Research article | 11 Aug 2016

Annual Greenland accumulation rates (2009–2012) from airborne snow radar

Lora S. Koenig et al.
Viewed  
Total article views: 3,963 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
2,720 1,100 143 3,963 92 144
  • HTML: 2,720
  • PDF: 1,100
  • XML: 143
  • Total: 3,963
  • BibTeX: 92
  • EndNote: 144
Views and downloads (calculated since 10 Dec 2015)
Cumulative views and downloads (calculated since 10 Dec 2015)
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 13 Nov 2019
Publications Copernicus
Download
Short summary
Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor surface mass balance in order to improve sea-level rise predictions. Here, we quantify the net annual accumulation over the Greenland Ice Sheet, which comprises the largest component of surface mass balance, at a higher spatial resolution than currently available using high-resolution, airborne-radar data.
Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice...
Citation