Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
The Cryosphere, 10, 2057-2068, 2016
https://doi.org/10.5194/tc-10-2057-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
14 Sep 2016
Direct visualization of solute locations in laboratory ice samples
Ted Hullar and Cort Anastasio Department of Land, Air, and Water Resources, University of California, Davis, USA
Abstract. Many important chemical reactions occur in polar snow, where solutes may be present in several reservoirs, including at the air–ice interface and in liquid-like regions within the ice matrix. Some recent laboratory studies suggest chemical reaction rates may differ in these two reservoirs. While investigations have examined where solutes are found in natural snow and ice, few studies have examined either solute locations in laboratory samples or the possible factors controlling solute segregation. To address this, we used micro-computed tomography (microCT) to examine solute locations in ice samples prepared from either aqueous cesium chloride (CsCl) or rose bengal solutions that were frozen using several different methods. Samples frozen in a laboratory freezer had the largest liquid-like inclusions and air bubbles, while samples frozen in a custom freeze chamber had somewhat smaller air bubbles and inclusions; in contrast, samples frozen in liquid nitrogen showed much smaller concentrated inclusions and air bubbles, only slightly larger than the resolution limit of our images (∼ 2 µm). Freezing solutions in plastic vs. glass vials had significant impacts on the sample structure, perhaps because the poor heat conductivity of plastic vials changes how heat is removed from the sample as it cools. Similarly, the choice of solute had a significant impact on sample structure, with rose bengal solutions yielding smaller inclusions and air bubbles compared to CsCl solutions frozen using the same method. Additional experiments using higher-resolution imaging of an ice sample show that CsCl moves in a thermal gradient, supporting the idea that the solutes in ice are present in mobile liquid-like regions. Our work shows that the structure of laboratory ice samples, including the location of solutes, is sensitive to the freezing method, sample container, and solute characteristics, requiring careful experimental design and interpretation of results.

Citation: Hullar, T. and Anastasio, C.: Direct visualization of solute locations in laboratory ice samples, The Cryosphere, 10, 2057-2068, https://doi.org/10.5194/tc-10-2057-2016, 2016.
Publications Copernicus
Download
Short summary
We study chemical reactions in snow and ice by freezing solutions in the laboratory. Although it is important to know where these chemicals are in the frozen sample (at the surface or buried in the ice), we do not understand this well. In this paper, we used X-rays to look at the chemical location in frozen samples. We found chemical location is sensitive to freezing method, sample container, and chemical characteristics, requiring careful experimental design and interpretation of results.
We study chemical reactions in snow and ice by freezing solutions in the laboratory. Although it...
Share