Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 10, issue 6
The Cryosphere, 10, 2941–2952, 2016
https://doi.org/10.5194/tc-10-2941-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 10, 2941–2952, 2016
https://doi.org/10.5194/tc-10-2941-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 Nov 2016

Research article | 30 Nov 2016

Local reduction of decadal glacier thickness loss through mass balance management in ski resorts

Andrea Fischer et al.
Related authors  
Long-term records of glacier surface velocities in the Ötztal Alps (Austria)
Martin Stocker-Waldhuber, Andrea Fischer, Kay Helfricht, and Michael Kuhn
Earth Syst. Sci. Data, 11, 705–715, https://doi.org/10.5194/essd-11-705-2019,https://doi.org/10.5194/essd-11-705-2019, 2019
Ice flow velocity as a sensitive indicator of glacier state
Martin Stocker-Waldhuber, Andrea Fischer, Kay Helfricht, and Michael Kuhn
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-37,https://doi.org/10.5194/tc-2018-37, 2018
Revised manuscript has not been submitted
Investigating cold based summit glaciers through direct access to the glacier base: a case study constraining the maximum age of Chli Titlis glacier, Switzerland
Pascal Bohleber, Helene Hoffmann, Johanna Kerch, Leo Sold, and Andrea Fischer
The Cryosphere, 12, 401–412, https://doi.org/10.5194/tc-12-401-2018,https://doi.org/10.5194/tc-12-401-2018, 2018
Short summary
Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria
A. Fischer, B. Seiser, M. Stocker Waldhuber, C. Mitterer, and J. Abermann
The Cryosphere, 9, 753–766, https://doi.org/10.5194/tc-9-753-2015,https://doi.org/10.5194/tc-9-753-2015, 2015
Short summary
Related subject area  
Alpine Glaciers
Glacier thickness estimations of alpine glaciers using data and modeling constraints
Lisbeth Langhammer, Melchior Grab, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 13, 2189–2202, https://doi.org/10.5194/tc-13-2189-2019,https://doi.org/10.5194/tc-13-2189-2019, 2019
Short summary
Unravelling the evolution of Zmuttgletscher and its debris cover since the end of the Little Ice Age
Nico Mölg, Tobias Bolch, Andrea Walter, and Andreas Vieli
The Cryosphere, 13, 1889–1909, https://doi.org/10.5194/tc-13-1889-2019,https://doi.org/10.5194/tc-13-1889-2019, 2019
Short summary
Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble
Harry Zekollari, Matthias Huss, and Daniel Farinotti
The Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019,https://doi.org/10.5194/tc-13-1125-2019, 2019
Short summary
Robust uncertainty assessment of the spatio-temporal transferability of glacier mass and energy balance models
Tobias Zolles, Fabien Maussion, Stephan Peter Galos, Wolfgang Gurgiser, and Lindsey Nicholson
The Cryosphere, 13, 469–489, https://doi.org/10.5194/tc-13-469-2019,https://doi.org/10.5194/tc-13-469-2019, 2019
Short summary
Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography
Matthew Olson and Summer Rupper
The Cryosphere, 13, 29–40, https://doi.org/10.5194/tc-13-29-2019,https://doi.org/10.5194/tc-13-29-2019, 2019
Short summary
Cited articles  
Abermann, J., Lambrecht, A., and Schneider, H.: Analysis of surface elevation changes on Kesselwand glacier – Comparison of different methods, Zeitschrift für Gletscherkunde und Glazialgeologie, 41, 147–168, 2007.
Abermann, J., Lambrecht, A., Fischer, A., and Kuhn, M.: Quantifying changes and trends in glacier area and volume in the Austrian Ötztal Alps (1969–1997–2006), The Cryosphere, 3, 205–215, https://doi.org/10.5194/tc-3-205-2009, 2009.
Abermann, J., Fischer, A., Lambrecht, A., and Geist, T.: On the potential of very high-resolution repeat DEMs in glacial and periglacial environments, The Cryosphere, 4, 53–65, https://doi.org/10.5194/tc-4-53-2010, 2010.
Bollmann, E., Sailer, R., Briese, C., Stötter, J., and Fritzmann, P.: Potential of airborne laser scanning for geomorphologic feature and process detection and quantifications in high alpine mountains, Z. Geomorphol. Supp., 55, 83–104, https://doi.org/10.1127/0372-8854/2011/0055S2-0047, 2011.
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A., Braithwaite, R. J., Jansson, P., Kaser, G., Möller, M., Nicholson, L., and Zemp, M.: Glossary of Glacier Mass Balance and Related Terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris, 124 pp., 2011.
Publications Copernicus
Download
Short summary
In the Alps, glacier cover, snow farming and technical snow production were introduced as adaptation measures to climate change one decade ago. Comparing elevation changes in areas with and without mass balance management in five ski resorts showed that locally up to 20 m of ice thickness was preserved compared to non-maintained areas. The method can be applied to maintainance of skiing infrastructure but has also some potential for melt management at high and dry glaciers.
In the Alps, glacier cover, snow farming and technical snow production were introduced as...
Citation