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1 Possible implementations of a discontinuous
friction at the GL

Elmer/Ice uses the finite element method and, by construction, all the field vari-
ables are defined as nodal values and so is the GL which follows the edges of the
elements. The GL dynamics is solved as a contact problem between the ice and the
underlying bed. The effectiveness of the contact is tested for each node belonging
on the bed by comparing the residual force of the Stokes equations to the force
exerted by the sea water pressure (for more details, see Durand et al., 2009a).
By definition, the GL is the ensemble of nodes which are the last in contact with
the bedrock, i.e. for which the Stokes residual is strickly larger than the water
force. Furthermore, the GL. marks the transition between ice in contact with the
bedrock, and therefore subject to friction, and ice in contact with the ocean with
a free slip condition.

In the case of a discontinuous friction at the GL, three modelling strategies
can be used to impose this transition at the GL between the slip condition to
the free-slip condition (see Fig. S1). The first strategy is assuming that the GL
defines the last grounded (LG) nodes and that friction is applied up to the nodes
belonging to the GL. In the second, the nodes belonging to the GL are assumed to
be the first floating (FF) nodes and are already freely slipping. The third strategy
assumes that the friction is discontinuous (DI) at the nodes belonging to the GL:
friction at these nodes is only applied if integrating over an element where all other
nodes are also in contact with the bedrock but a free slip condition is applied if the
node belongs to an element where at least one node is in contact with the ocean.



The three implementation strategies are illustrated in a two-dimensional flow line
configuration in Fig. S1.
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Figure S1: Two-dimensional schematic explanation of the three different imple-
mentations to impose the friction in the close vicinity of the GL. (a) Zoom on the
triple junction point between ice, bedrock and ocean, defined as the GL (red dot
and z,) and (b) changes in the friction parameter C' close to the GL, with the
three methods: friction is applied at the GL which is then the last grounded node
(LG, brown), pure sliding is applied at the GL which is then the first floating node
(FF, blue) and the friction is discontinuous at the GL (DI, purple). The coloured
dots are the bottom boundary nodes of the finite element mesh: brown in contact
with the bedrock, blue in contact with the ocean and red at the GL.

To build the finite element system to be solved, the friction needs to be inter-
polated at the integration points of each element. For the LG implementation, the
first elements in contact with the ocean are therefore undergoing some friction due
to the interpolation between a non-zero friction value at the nodes belonging to the
GL and zero value at the other nodes. On the contrary, for the FF implementation
the friction is lowered in the last elements in contact with the bedrock because
of the vanishing friction at the GL nodes. The DI implementation is therefore
certainly the most physical as friction is applied up to the GL but switched off
in the first elements in contact with ocean. However the three methods should
converge to the same solution when the elements size decreases. Moreover, the
three methods give identical results if the friction at the GL is null, whatever the
mesh discretisation. Up to now, all the published Elmer/Ice results were obtained
using the LG method (Durand et al., 2009a,b, 2011; Gagliardini et al., 2010, 2013;
Favier et al., 2012, 2014; Drouet et al., 2013; Gudmundsson et al., 2012; Pattyn
et al., 2012, 2013; Krug et al., 2014).



2 New results for MISMIP3d P75D

The three implementations are compared using the diagnostic experiment P75D of
MISMIP3d. The objective of experiment P75D was to compare the velocity field
obtained by the various Stokes approximations for a prescribed glacier geometry.
This geometry, the same for all numerical models, was defined as the one obtained
with Elmer/Ice at ¢ = 100 a for experiment P75S (the last time step of the
perturbation experiment, see main text and Pattyn et al. (2013) for more details on
the experimental setups). We recall that at that time this geometry was obtained
using the LG implementation. Exactly the same mesh as in Pattyn et al. (2013)
is used here to compare the three methods on this diagnostic experiment.

In Pattyn et al. (2013), the boundary condition (BC) applied at the base of the
ice-shelf for the diagnostic experiment was not specified. If this condition is clear
for lower-order Stokes models (i.e. for vertically integrated models), this is not
the case when solving for the full-Stokes solution. We first enumerate the possible
BCs to be applied at the base of an ice-shelf for a Stokes model. The velocity field
obtained with the three methods for interpolating the friction at the GL are then
compared.

For a Stokes prognostic simulation, assuming no accretion/melting, Durand
et al. (2009a) have shown that the following BC should be applied at the base of
the ice-shelf (BC1):

Unn’b = _pwg(lw - Zb) + Cnum (1)

where o, |, is the normal Cauchy stress applied at the base of the ice-shelf, [,
and z, are the sea and ice-shelf bottom elevations, respectively, p, the water
density, g the gravity, u, = @ - 7 the normal component of the ice velocity and
Cy = pwgy/1+ (02,/0x)% + (02,/0y)2dt. As explained in Durand et al. (2009a),
C, acts like a damper on the bottom interface so that the normal stress induced
by Cyu, will counteract the buoyancy stress and will avoid too large velocity that
would arise even for a small buoyancy disequilibrium.

For a Stokes diagnostic simulation, one can think about two other BC for the
ocean/ice interface. For all of them we implicitly assume that there is no melting
or marine ice accretion below the ice-shelf.

The first is deduced from the free surface evolution assuming a steady-state
geometry and no melting or accretion. Under such hypotheses, the bottom free
surface evolution reduces to the simple Dirichlet BC (BC2):

Uy =u-n=0. (2)

The second, a Neumann BC, assumes the buoyancy equilibrium at the interface
ice/ocean (BC3):

Unn|b = _ng(lw - Zb>~ (3)



BC1 derives from BC3 with an implicit evaluation of z, at ¢ 4+ dt using the free
surface equation for z,. Note that vertically integrated models does not require
any BC at the base of the ice-shelf for a diagnostic simulation as far as the vertical
velocity is not computed.

For a steady-state geometry and assuming no melting or accretion below the
ice-shelf, all three BC should give the same velocity field as one expects u, = 0 and
the buoyancy equilibrium to be fulfilled. Here, for the diagnostic experiment P75D,
because the geometry does correspond to a snapshot of a transient evolution, the
ice-shelf is not exactly at the buoyancy equilibrium. This is true for the LG method
with which the geometry was obtained, and even worse for the two other methods
which have completely different geometries after the 100 year perturbation (see
discussion below and Fig. S4). We therefore tested the three possibilities for the
bottom ice-shelf BC.

Even for the LG method, no convergence of the non-linear iteration was ob-
tained with the Neumann BC3. This indicates that even a small buoyancy dise-
quilibrium renders the Stokes problem ill-posed. Adding the viscous damper C,
to the hydrostatic stress (BC1 given by Eq. 1) has a stabilisation effect and allow
convergence. No results are therefore presented for BC3. Results for the two other
BCs, BC1 and BC2, are presented below.

Changes along the z direction of the x component of the surface velocity at
y = 0 (symmetry axis for the flow and centre for the perturbation of the basal
friction parameter) and at y = 50km (side of the domain) are presented for all
three implementation strategies and for the two BCs BC1 and BC2 in Fig. S2. As
can be seen in this figure, the LG method leads to the smallest velocity and the FF
method to the largest, while the velocity obtained with the DI method is between
the two. The way the friction is interpolated at the GL not only influences the
velocity downstream from the GL but also over a few ice thicknesses upstream
from the GL. At the GL, the relative difference in velocity between LG and FF
methods is as high as 23% for y = 0 and 17% for y = 50km. The difference is
greater at y = 0 than at y = 50km despite less friction at the GL at y = 0 than
at y = 50km. As the vertical gradients of horizontal velocity are small at the
GL, similar differences would be expected in ice fluxes trough the GL. As depicted
in Fig. S3, these differences in velocity are induced by different distributions of
the basal shear stress between the three methods. Figure S3 shows high relative
differences of the local tangential stress between the three methods (larger than
50% at some place), but these differences are located in the close vicinity of the
GL and they compensate when integrated over all the bedrock. Indeed, all three
methods have the same total traction force at the base, as required by the global
equilibrium of the ice mass submitted to the gravity force. As expected, the basal
shear stress is overestimated downstream the GL for the LG method relative to the



DI method (Fig. S3a). This excess of stress downstream the GL for the LG method
is compensated by a lower shear stress upstream the GL. The opposite pattern is
observed for the FF method relative to the DI method (Fig. S3b). If the change
in basal stress stays local, the induced changes on the velocity are transported and
cumulated downstream, explaining the shape of the curves depicted in Fig. S2.
Given the mesh resolution adopted to produce these results, the way the friction
law is applied in the very close vicinity of the GL is found to have a significant
effect on the velocity field.

The Elmer/Ice velocity solution for experiment P75D in Pattyn et al. (2013)
is also shown in Fig. S2 (black curve, named LFA in Pattyn et al., 2013). As
Elmer/Ice has been used to design the experiment, the geometry and velocity field
were directly extracted from the last time step of the transient experiment P75S.
Because of the time-integration scheme in Elmer/Ice, the velocity field was in fact
computed from the previous time step geometry (¢ — 0.5a), and not computed
as the steady-state solution of the geometry provided. This explains the minor
difference between the published velocity solution and the newly computed LG
solution (brown thick curve in Fig. S2).

The two solutions for the BC below the ice-shelf give slightly different results
for all three methods. As shown in Fig. S2, the horizontal flow at the GL for
BC2 is found to be slower by approximately 1% than the one for BC1, for all
three methods and both at y = 0 and y = 50 km. For BC1, despite its theoretical
validity only for transient simulation (time step dt entering Eq. 1), the results
presented in Fig. S2 were obtained assuming an arbitrary time step dt = 1a.
Anyway, other realistic choices of dt would not change significantly the results
as the term Chu, in Eq. (1) is found to be at least 103 times smaller than the
hydrostatic pressure —pyg(ly — 2). Because the Dirichlet boundary condition
BC2 is certainly the easiest to implement and test, the results for both BCs BC1
and BC2 are given as Supplement. For future comparisons, it would be therefore
more consistent to use the results in the Supplement of the present publication,
either with the buoyancy BC1 or the Dirichlet BC2 applied at the base of the
ice-shelf.

2.1 Complementary Figures and Table for experiments MIS-
MIP3d P75S and P75R

Figure S4 shows the evolution of the GL during the 100 years of the perturbation
(from 0 to 100years) and during the same time after the perturbation has been
removed (from 100 to Oyears), at y = 0 and y = 50km. As shown in this figure,
the transient responses of the three methods relative to their initial position xg,
are similar during the first 5 years, but then differ significantly. Interestingly, if the
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Figure S2: Experiment MISMIP3d P75D: surface velocity along the x direction
for the three different methods: LG (brown), DI (purple) and FF (blue) on the
symmetry axis (y = 0; continuous line) and on the free-slip boundary (y = 50 km,
dashed line), for BC (Eq. 1) (thick line) and BC (Eq. 2) (thin line). The LFA
Elmer/Ice solution published in Pattyn et al. (2013) is represented in black (mostly
hidden by the LG brown thick curve), The signs indicate the GL position in y = 0
(dot) and y = 50km (star).

LG GL is continuously advancing at y = 0, this is not anymore the case for the
two other methods. The rapid advance of the FF GL position at y = 0 occurring
during the first years is then followed by a retreat of almost the same magnitude
after 100 years, with a difference lower than 2km with the initial GL position,
when it is almost 19km for the LG one (see Table S1). After the perturbation
is removed, the GL starts to move back towards its initial steady state position.
Nevertheless, after 100 years (dashed lines from 100 to 0 a in Fig. S4), the GLs are
still far from having reached again the steady state position (A,, = 0). The LG
method is the fastest in coming back to its steady state position whereas the FF
is the slowest. These results were obtained for a resolution of N, = 20 elements in
the lateral direction. Figures S5 and S6 present the results for lateral resolutions
of N, =40 and N, = 80, respectively, everything else being the same. These new
results are discussed in the main paper.



Figure S3: Experiment MISMIP3d P75D: relative difference between the shear
stress at the bed for (a) the DI and LG methods and (b) the DI and FF methods
[%]. The black line indicates the GL position. The tangent used to compute the
shear stress is the one perpendicular to the transverse direction of the flow.

Table S1: Experiment MISMIP3d P75S and P75R: initial steady GL position (z¢,,
km) and differences between the final (¢ = 100 a) and initial GL positions (Azg,
km) in y = 0 and y = 50km, as a function of the method and the number of
element along the y direction (N,). LFA is the Elmer/Ice solution published in
Pattyn et al. (2013).

Last Grounded LG Discontinuous DI First Floating FF LFA
Ny 20 40 80 20 40 80 20 40 80 20
en 529.550 526.800 522.350 537.078
Azglo  18.950 16.350 15.050 9.250 10.825 11.950 1.950 6.425 9.900 17.622
Azglso —0.100 —2.750 —3.850 —8.000 —7.050 —6.250 —13.060 —10.250 —7.850 —1.178
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Figure S4: Experiment MISMIP3d P75S and P75R: time-dependent plot of the
GL position relative to the steady position x¢, (see Table S1) during (P75S; con-
tinuous) and after (P75R; dashed) the basal sliding perturbation, on the symmetry
axis (y = 0; top curves) and on the free-slip boundary (y = 50 km; bottom curves)
for the three different implementations: LG (brown), DI (purple) and FF (blue).
The black dotted curve is the GL evolution for the LFA solution published in Pat-
tyn et al. (2013) (LG method and N,, = 20). The mesh resolution in the y direction
is N, = 20 elements for all simulations.
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Figure S5: Same as Fig. S4 but for a lateral discretisation of N, = 40 elements.
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Figure S6: Same as Fig. S4 but for a lateral discretisation of N, = 80 elements.
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