Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year
    5.558
  • CiteScore value: 4.84 CiteScore
    4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
Volume 10, issue 1
The Cryosphere, 10, 313-328, 2016
https://doi.org/10.5194/tc-10-313-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 10, 313-328, 2016
https://doi.org/10.5194/tc-10-313-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 Feb 2016

Research article | 10 Feb 2016

Cloud effects on surface energy and mass balance in the ablation area of Brewster Glacier, New Zealand

J. P. Conway1,2 and N. J. Cullen1 J. P. Conway and N. J. Cullen
  • 1Department of Geography, University of Otago, Dunedin, New Zealand
  • 2Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada

Abstract. The effect of clouds on glacier surface energy balance (SEB) has received increased attention in the last decade, but how clouds interact with other meteorological forcing to influence surface mass balance (SMB) is not as well understood. This paper resolves the SEB and SMB at a site in the ablation zone of Brewster Glacier over a 22-month period, using high-quality radiation data to carefully evaluate SEB terms and define clear-sky and overcast conditions. A fundamental change in glacier SEB in cloudy conditions was driven by increased effective sky emissivity and surface vapour pressure, rather than a minimal change in air temperature and wind speed. During overcast conditions, positive net long-wave radiation and latent heat fluxes allowed melt to be maintained through a much greater length of time compared to clear-sky conditions, and led to similar melt in each sky condition. The sensitivity of SMB to changes in air temperature was greatly enhanced in overcast compared to clear-sky conditions due to more frequent melt and changes in precipitation phase that created a strong albedo feedback. During the spring and autumn seasons, the sensitivity during overcast conditions was strongest. To capture these processes, future attempts to explore glacier–climate interactions should aim to resolve the effects of atmospheric moisture (vapour, cloud, and precipitation) on melt as well as accumulation, through enhanced statistical or physically based methods.

Publications Copernicus
Download
Short summary
Clouds are shown to force fundamental changes in the surface energy and mass balance of Brewster Glacier, New Zealand. Cloudy periods exhibit greater melt due to increased incoming long-wave radiation and higher atmospheric vapour pressure rather than through minimal changes in mean air temperature and wind speed. Surface mass-balance sensitivity to air temperature is enhanced in overcast compared to clear-sky periods due to more frequent melt and a strong precipitation phase to albedo feedback.
Clouds are shown to force fundamental changes in the surface energy and mass balance of Brewster...
Citation