Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 10, issue 1
The Cryosphere, 10, 371–384, 2016
https://doi.org/10.5194/tc-10-371-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Intercomparison of methods to characterise snow...

The Cryosphere, 10, 371–384, 2016
https://doi.org/10.5194/tc-10-371-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Feb 2016

Research article | 15 Feb 2016

Intercomparison of snow density measurements: bias, precision, and vertical resolution

Martin Proksch et al.
Related authors  
Observation and modelling of snow at a polygonal tundra permafrost site: spatial variability and thermal implications
Isabelle Gouttevin, Moritz Langer, Henning Löwe, Julia Boike, Martin Proksch, and Martin Schneebeli
The Cryosphere, 12, 3693–3717, https://doi.org/10.5194/tc-12-3693-2018,https://doi.org/10.5194/tc-12-3693-2018, 2018
Short summary
Measured and Modeled Snow Cover Properties across the Greenland Ice Sheet
Sascha Bellaire, Martin Proksch, Martin Schneebeli, Masashi Niwano, and Konrad Steffen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-55,https://doi.org/10.5194/tc-2017-55, 2017
Publication in TC not foreseen
Nordic Snow Radar Experiment
Juha Lemmetyinen, Anna Kontu, Jouni Pulliainen, Juho Vehviläinen, Kimmo Rautiainen, Andreas Wiesmann, Christian Mätzler, Charles Werner, Helmut Rott, Thomas Nagler, Martin Schneebeli, Martin Proksch, Dirk Schüttemeyer, Michael Kern, and Malcolm W. J. Davidson
Geosci. Instrum. Method. Data Syst., 5, 403–415, https://doi.org/10.5194/gi-5-403-2016,https://doi.org/10.5194/gi-5-403-2016, 2016
Anisotropy of seasonal snow measured by polarimetric phase differences in radar time series
Silvan Leinss, Henning Löwe, Martin Proksch, Juha Lemmetyinen, Andreas Wiesmann, and Irena Hajnsek
The Cryosphere, 10, 1771–1797, https://doi.org/10.5194/tc-10-1771-2016,https://doi.org/10.5194/tc-10-1771-2016, 2016
Short summary
Arctic Snow Microstructure Experiment for the development of snow emission modelling
William Maslanka, Leena Leppänen, Anna Kontu, Mel Sandells, Juha Lemmetyinen, Martin Schneebeli, Martin Proksch, Margret Matzl, Henna-Reetta Hannula, and Robert Gurney
Geosci. Instrum. Method. Data Syst., 5, 85–94, https://doi.org/10.5194/gi-5-85-2016,https://doi.org/10.5194/gi-5-85-2016, 2016
Short summary
Related subject area  
Instrumentation
Monitoring of snow surface near-infrared bidirectional reflectance factors with added light-absorbing particles
Adam Schneider, Mark Flanner, Roger De Roo, and Alden Adolph
The Cryosphere, 13, 1753–1766, https://doi.org/10.5194/tc-13-1753-2019,https://doi.org/10.5194/tc-13-1753-2019, 2019
Short summary
High-accuracy UAV photogrammetry of ice sheet dynamics with no ground control
Thomas R. Chudley, Poul Christoffersen, Samuel H. Doyle, Antonio Abellan, and Neal Snooke
The Cryosphere, 13, 955–968, https://doi.org/10.5194/tc-13-955-2019,https://doi.org/10.5194/tc-13-955-2019, 2019
Short summary
An assessment of sub-snow GPS for quantification of snow water equivalent
Ladina Steiner, Michael Meindl, Charles Fierz, and Alain Geiger
The Cryosphere, 12, 3161–3175, https://doi.org/10.5194/tc-12-3161-2018,https://doi.org/10.5194/tc-12-3161-2018, 2018
Short summary
Autonomous ice sheet surface mass balance measurements from cosmic rays
Ian M. Howat, Santiago de la Peña, Darin Desilets, and Gary Womack
The Cryosphere, 12, 2099–2108, https://doi.org/10.5194/tc-12-2099-2018,https://doi.org/10.5194/tc-12-2099-2018, 2018
Short summary
An assessment of two automated snow water equivalent instruments during the WMO Solid Precipitation Intercomparison Experiment
Craig D. Smith, Anna Kontu, Richard Laffin, and John W. Pomeroy
The Cryosphere, 11, 101–116, https://doi.org/10.5194/tc-11-101-2017,https://doi.org/10.5194/tc-11-101-2017, 2017
Short summary
Cited articles  
Adams, E. and Sato, A.: Model of effective thermal conductivity of a dry snow cover composed of uniform spheres, Ann. Glaciol., 18, 300–304, 1993.
Albert, M.: Modeling heat, mass, and species transport in polar firn, Ann. Glaciol., 23, 138–143, 1996.
Brun, E., Martin, E., Simon, V., Gendre, C., and Coleou, C.: An energy and mass model of snow cover suitable for operational avalanche forecasting, J. Glaciol., 35, 333–342, 1989.
Calonne, N., Flin, F., Morin, S., Lesaffre, B., Rolland du Roscoat, S., and Geindreau, C.: Numerical and experimental investigations of the effective thermal conductivity of snow, Geophys. Res. Lett., 38, L23501, https://doi.org/10.1029/2011GL049234, 2011.
Calonne, N., Geindreau, C., Flin, F., Morin, S., Lesaffre, B., Rolland du Roscoat, S., and Charrier, P.: 3-D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy, The Cryosphere, 6, 939–951, https://doi.org/10.5194/tc-6-939-2012, 2012.
Publications Copernicus
Download
Short summary
Density is a fundamental property of porous media such as snow. During the MicroSnow Davos 2014 workshop, different approaches (box-, wedge- and cylinder-type density cutters, micro-computed tomography) to measure snow density were applied in a controlled laboratory environment and in the field. In general, results suggest that snow densities measured by different methods agree within 9 %. However, the density profiles resolved by the measurement methods differed considerably.
Density is a fundamental property of porous media such as snow. During the MicroSnow Davos 2014...
Citation