Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 10, issue 1
The Cryosphere, 10, 401–415, 2016
https://doi.org/10.5194/tc-10-401-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 10, 401–415, 2016
https://doi.org/10.5194/tc-10-401-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 17 Feb 2016

Research article | 17 Feb 2016

Late-summer sea ice segmentation with multi-polarisation SAR features in C and X band

Ane S. Fors et al.
Related authors  
Signature of Arctic first-year ice melt pond fraction in X-band SAR imagery
Ane S. Fors, Dmitry V. Divine, Anthony P. Doulgeris, Angelika H. H. Renner, and Sebastian Gerland
The Cryosphere, 11, 755–771, https://doi.org/10.5194/tc-11-755-2017,https://doi.org/10.5194/tc-11-755-2017, 2017
Short summary
Related subject area  
Remote Sensing
Suitability analysis of ski areas in China: an integrated study based on natural and socioeconomic conditions
Jie Deng, Tao Che, Cunde Xiao, Shijin Wang, Liyun Dai, and Akynbekkyzy Meerzhan
The Cryosphere, 13, 2149–2167, https://doi.org/10.5194/tc-13-2149-2019,https://doi.org/10.5194/tc-13-2149-2019, 2019
Short summary
The 2018 North Greenland polynya observed by a newly introduced merged optical and passive microwave sea-ice concentration dataset
Valentin Ludwig, Gunnar Spreen, Christian Haas, Larysa Istomina, Frank Kauker, and Dmitrii Murashkin
The Cryosphere, 13, 2051–2073, https://doi.org/10.5194/tc-13-2051-2019,https://doi.org/10.5194/tc-13-2051-2019, 2019
Short summary
Iceberg topography and volume classification using TanDEM-X interferometry
Dyre O. Dammann, Leif E. B. Eriksson, Son V. Nghiem, Erin C. Pettit, Nathan T. Kurtz, John G. Sonntag, Thomas E. Busche, Franz J. Meyer, and Andrew R. Mahoney
The Cryosphere, 13, 1861–1875, https://doi.org/10.5194/tc-13-1861-2019,https://doi.org/10.5194/tc-13-1861-2019, 2019
Short summary
Automatically delineating the calving front of Jakobshavn Isbræ from multitemporal TerraSAR-X images: a deep learning approach
Enze Zhang, Lin Liu, and Lingcao Huang
The Cryosphere, 13, 1729–1741, https://doi.org/10.5194/tc-13-1729-2019,https://doi.org/10.5194/tc-13-1729-2019, 2019
Short summary
Regional influence of ocean-climate teleconnections on the timingand duration of MODIS derived snow cover in British Columbia, Canada
Alexandre R. Bevington, Hunter E. Gleason, Vanessa N. Foord, William C. Floyd, and Hardy P. Griesbauer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-61,https://doi.org/10.5194/tc-2019-61, 2019
Revised manuscript accepted for TC
Short summary
Cited articles  
Barber, D. G., Yackel, J. J., Wolf, R. L., and Lumsden, W.: Estimating the thermodynamic state of snow covered sea ice using time series Synthetic Aperture Radar (SAR) data, in: International Society of Offshore and Polar Engineers Vol. III, The Eighth International Offshore and Polar Engineering Conference, 24–29 May 1998, Montreal, Canada, 50–54, 1998.
Beckers, J. F., Renner, A. H. H., Spreen, G., Gerland, S., and Haas, C.: Sea-ice surface roughness estimates from airborne laser scanner and laser altimeter observations in Fram Strait and north of Svalbard, Ann. Glaciol., 56, 235–244, https://doi.org/10.3189/2015AoG69A717, 2015.
Bowman, A. W. and Azzalini, A.: Applied Smoothing Techniques for Data Analysis, Oxford University Press, New York, 1997.
Brath, M., Kern, S., and Stammer, D.: Sea ice classification during freeze-up conditions with multifrequency scatterometer data, IEEE T. Geosci. Remote, 51, 3336–3353, 2013.
Carlstrom, A. and Ulander, L.: C-band backscatter signatures of old sea ice in the central Arctic during freeze-up, IEEE T. Geosci. Remote, 31, 819–829, https://doi.org/10.1109/36.239904, 1993.
Publications Copernicus
Download
Short summary
This paper demonstrates how sea ice segmentation using high-resolution multi-polarisation synthetic aperture radar (SAR) can be used to retrieve valuable information about sea ice type during late summer. It adds knowledge to how choice of SAR features influence the information gain and highlights the sea ice segmentation capability of both the C and X band in late summer. The study contributes to an increased understanding of sea ice mapping and monitoring with SAR in the melt season.
This paper demonstrates how sea ice segmentation using high-resolution multi-polarisation...
Citation