Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 10, issue 2 | Copyright
The Cryosphere, 10, 477-496, 2016
https://doi.org/10.5194/tc-10-477-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 03 Mar 2016

Research article | 03 Mar 2016

The darkening of the Greenland ice sheet: trends, drivers, and projections (1981–2100)

Marco Tedesco et al.
Related authors
Seasonal monitoring of melt and accumulation within the deep percolation zone of the Greenland Ice Sheet and comparison with simulations of regional climate modeling
Achim Heilig, Olaf Eisen, Michael MacFerrin, Marco Tedesco, and Xavier Fettweis
The Cryosphere, 12, 1851-1866, https://doi.org/10.5194/tc-12-1851-2018,https://doi.org/10.5194/tc-12-1851-2018, 2018
Melting over the East Antarctic Peninsula (1999–2009): evaluation of a high-resolution regional climate model
Rajashree T. Datta, Marco Tedesco, Cecile Agosta, Xavier Fettweis, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-253,https://doi.org/10.5194/tc-2017-253, 2017
Revised manuscript accepted for TC
Investigating the local-scale influence of sea ice on Greenland surface melt
Julienne C. Stroeve, John R. Mioduszewski, Asa Rennermalm, Linette N. Boisvert, Marco Tedesco, and David Robinson
The Cryosphere, 11, 2363-2381, https://doi.org/10.5194/tc-11-2363-2017,https://doi.org/10.5194/tc-11-2363-2017, 2017
Impact of MODIS sensor calibration updates on Greenland Ice Sheet surface reflectance and albedo trends
Kimberly A. Casey, Chris M. Polashenski, Justin Chen, and Marco Tedesco
The Cryosphere, 11, 1781-1795, https://doi.org/10.5194/tc-11-1781-2017,https://doi.org/10.5194/tc-11-1781-2017, 2017
Annual Greenland accumulation rates (2009–2012) from airborne snow radar
Lora S. Koenig, Alvaro Ivanoff, Patrick M. Alexander, Joseph A. MacGregor, Xavier Fettweis, Ben Panzer, John D. Paden, Richard R. Forster, Indrani Das, Joesph R. McConnell, Marco Tedesco, Carl Leuschen, and Prasad Gogineni
The Cryosphere, 10, 1739-1752, https://doi.org/10.5194/tc-10-1739-2016,https://doi.org/10.5194/tc-10-1739-2016, 2016
Related subject area
Greenland
Greenland Ice Mapping Project: ice flow velocity variation at sub-monthly to decadal timescales
Ian Joughin, Ben E. Smith, and Ian Howat
The Cryosphere, 12, 2211-2227, https://doi.org/10.5194/tc-12-2211-2018,https://doi.org/10.5194/tc-12-2211-2018, 2018
Observations and modelling of algal growth on a snowpack in north-western Greenland
Yukihiko Onuma, Nozomu Takeuchi, Sota Tanaka, Naoko Nagatsuka, Masashi Niwano, and Teruo Aoki
The Cryosphere, 12, 2147-2158, https://doi.org/10.5194/tc-12-2147-2018,https://doi.org/10.5194/tc-12-2147-2018, 2018
Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery
Adriano Lemos, Andrew Shepherd, Malcolm McMillan, Anna E. Hogg, Emma Hatton, and Ian Joughin
The Cryosphere, 12, 2087-2097, https://doi.org/10.5194/tc-12-2087-2018,https://doi.org/10.5194/tc-12-2087-2018, 2018
Seasonal monitoring of melt and accumulation within the deep percolation zone of the Greenland Ice Sheet and comparison with simulations of regional climate modeling
Achim Heilig, Olaf Eisen, Michael MacFerrin, Marco Tedesco, and Xavier Fettweis
The Cryosphere, 12, 1851-1866, https://doi.org/10.5194/tc-12-1851-2018,https://doi.org/10.5194/tc-12-1851-2018, 2018
Brief communication: Improved simulation of the present-day Greenland firn layer (1960–2016)
Stefan R. M. Ligtenberg, Peter Kuipers Munneke, Brice P. Y. Noël, and Michiel R. van den Broeke
The Cryosphere, 12, 1643-1649, https://doi.org/10.5194/tc-12-1643-2018,https://doi.org/10.5194/tc-12-1643-2018, 2018
Cited articles
Alexander, P. M., Tedesco, M., Fettweis, X., van de Wal, R. S. W., Smeets, C. J. P. P., and van den Broeke, M. R.: Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013), The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014, 2014.
Arnaud, L., Barnola, J. M., and Duval, P.: Physical modeling of the densification of snow/firn and ice in the upper part of polar ice sheets, in: Physics of Ice Core Records, edited by: Hondoh, T., Hokkaido University Press, Sapporo, Japan, 285–305, 2000.
Arora, V. K. and Boer, G. J.: Uncertainties in the 20th century carbon budget associated with land use change, Global Change Biol., 16, 3327–3348, https://doi.org/10.1111/j.1365-2486.2010.02202.x, 2010.
Benning, L. G., Anesio, A. M., Lutz, S., and Tranter, M.: Biological impact on Greenland's albedo, Nat. Geosci., 7, 691–691, https://doi.org/10.1038/ngeo2260, 2014.
Benson, C. S.: Stratigraphic Studies in the Snow and Firn of the Greenland Ice Sheet, Research Report 70, US Army Snow, Ice, and Permafrost Research Establishment (SIPRE), US Army Cold Regions Research and Engineering Laboratory (CRREL), published version of C. S. Benson's PhD Dissertation of 1960, 93 pp., 1962.
Publications Copernicus
Download
Short summary
Summer surface albedo over Greenland decreased at a rate of 0.02 per decade between 1996 and 2012. The decrease is due to snow grain growth, the expansion of bare ice areas, and trends in light-absorbing impurities on snow and ice surfaces. Neither aerosol models nor in situ observations indicate increasing trends in impurities in the atmosphere over Greenland. Albedo projections through to the end of the century under different warming scenarios consistently point to continued darkening.
Summer surface albedo over Greenland decreased at a rate of 0.02 per decade between 1996 and...
Citation
Share