Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 10, issue 2
The Cryosphere, 10, 569–584, 2016
https://doi.org/10.5194/tc-10-569-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 10, 569–584, 2016
https://doi.org/10.5194/tc-10-569-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Mar 2016

Research article | 11 Mar 2016

Monitoring ice break-up on the Mackenzie River using MODIS data

P. Muhammad et al.
Related authors  
Satellite-derived light extinction coefficient and its impact on thermal structure simulations in a 1-D lake model
Kiana Zolfaghari, Claude R. Duguay, and Homa Kheyrollah Pour
Hydrol. Earth Syst. Sci., 21, 377–391, https://doi.org/10.5194/hess-21-377-2017,https://doi.org/10.5194/hess-21-377-2017, 2017
Short summary
Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015
Jinyang Du, John S. Kimball, Claude Duguay, Youngwook Kim, and Jennifer D. Watts
The Cryosphere, 11, 47–63, https://doi.org/10.5194/tc-11-47-2017,https://doi.org/10.5194/tc-11-47-2017, 2017
Short summary
Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations
Cristina M. Surdu, Claude R. Duguay, and Diego Fernández Prieto
The Cryosphere, 10, 941–960, https://doi.org/10.5194/tc-10-941-2016,https://doi.org/10.5194/tc-10-941-2016, 2016
Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): radar remote-sensing and numerical modeling data analysis
C. M. Surdu, C. R. Duguay, L. C. Brown, and D. Fernández Prieto
The Cryosphere, 8, 167–180, https://doi.org/10.5194/tc-8-167-2014,https://doi.org/10.5194/tc-8-167-2014, 2014
Pan-Arctic linkages between snow accumulation and growing-season air temperature, soil moisture and vegetation
K. A. Luus, Y. Gel, J. C. Lin, R. E. J. Kelly, and C. R. Duguay
Biogeosciences, 10, 7575–7597, https://doi.org/10.5194/bg-10-7575-2013,https://doi.org/10.5194/bg-10-7575-2013, 2013
Related subject area  
Remote Sensing
Effect of snow microstructure variability on Ku-band radar snow water equivalent retrievals
Nick Rutter, Melody J. Sandells, Chris Derksen, Joshua King, Peter Toose, Leanne Wake, Tom Watts, Richard Essery, Alexandre Roy, Alain Royer, Philip Marsh, Chris Larsen, and Matthew Sturm
The Cryosphere, 13, 3045–3059, https://doi.org/10.5194/tc-13-3045-2019,https://doi.org/10.5194/tc-13-3045-2019, 2019
Short summary
Recent glacier and lake changes in High Mountain Asia and their relation to precipitation changes
Désirée Treichler, Andreas Kääb, Nadine Salzmann, and Chong-Yu Xu
The Cryosphere, 13, 2977–3005, https://doi.org/10.5194/tc-13-2977-2019,https://doi.org/10.5194/tc-13-2977-2019, 2019
Short summary
Multisensor validation of tidewater glacier flow fields derived from synthetic aperture radar (SAR) intensity tracking
Christoph Rohner, David Small, Daniel Henke, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 13, 2953–2975, https://doi.org/10.5194/tc-13-2953-2019,https://doi.org/10.5194/tc-13-2953-2019, 2019
Short summary
Estimating the sea ice floe size distribution using satellite altimetry: theory, climatology, and model comparison
Christopher Horvat, Lettie A. Roach, Rachel Tilling, Cecilia M. Bitz, Baylor Fox-Kemper, Colin Guider, Kaitlin Hill, Andy Ridout, and Andrew Shepherd
The Cryosphere, 13, 2869–2885, https://doi.org/10.5194/tc-13-2869-2019,https://doi.org/10.5194/tc-13-2869-2019, 2019
Short summary
Detecting dynamics of cave floor ice with selective cloud-to-cloud approach
Jozef Šupinský, Ján Kaňuk, Zdenko Hochmuth, and Michal Gallay
The Cryosphere, 13, 2835–2851, https://doi.org/10.5194/tc-13-2835-2019,https://doi.org/10.5194/tc-13-2835-2019, 2019
Short summary
Cited articles  
Abdul Aziz, O. I. and Burn, D. H.: Trends and variability in the hydrological regime of the Mackenzie River Basin, J. Hydrol., 319, 282–294, https://doi.org/10.1016/j.jhydrol.2005.06.039, 2006.
Allen, W. T. R.: Freeze-up, Break-up and Ice Thickness in Canada: Embâcle, Débâcle Et Épaisseur de la Glace Au Canada, Environnement Atmosphérique, Downsview, Ontario, USA, 1977.
Beltaos, S.: Onset of river ice breakup, Cold Reg. Sci. Technol., 25, 183–196, https://doi.org/10.1016/S0165-232X(96)00011-0, 1997.
Beltaos, S.: Progress in the study and management of river ice jams, Cold Reg. Sci. Technol., 51, 2–19, 2008.
Beltaos, S.: Hydrodynamic characteristics and effects of river waves caused by ice jam releases, Cold Reg. Sci. Technol., 85, 42–55, https://doi.org/10.1016/j.coldregions.2012.08.003, 2013.
Publications Copernicus
Download
Short summary
This study involves the analysis of MODIS Level 3500 m snow products, complemented with 250 m Level 1B data, to monitor ice cover during the break-up period on the Mackenzie River, Canada. Results from the analysis of data for 13 ice seasons (2001–2013) show that ice-off begins between days of year (DOYs) 115 and 125 and ends between DOYs 145 and 155, resulting in average melt durations of about 30–40 days; we conclude that MODIS can monitor ice break-up.
This study involves the analysis of MODIS Level 3500 m snow products, complemented with 250 m...
Citation