Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 10, issue 3
The Cryosphere, 10, 995–1002, 2016
https://doi.org/10.5194/tc-10-995-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 10, 995–1002, 2016
https://doi.org/10.5194/tc-10-995-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 May 2016

Research article | 12 May 2016

Multi-method observation and analysis of a tsunami caused by glacier calving

Martin P. Lüthi and Andreas Vieli
Related authors  
Multisensor validation of tidewater glacier flow fields derived from synthetic aperture radar (SAR) intensity tracking
Christoph Rohner, David Small, Daniel Henke, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 13, 2953–2975, https://doi.org/10.5194/tc-13-2953-2019,https://doi.org/10.5194/tc-13-2953-2019, 2019
Short summary
Calving event size measurements and statistics of Eqip Sermia, Greenland, from terrestrial radar interferometry
Andrea Walter, Martin P. Lüthi, and Andreas Vieli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-102,https://doi.org/10.5194/tc-2019-102, 2019
Revised manuscript under review for TC
Short summary
In-situ measurements of the ice flow motion at Eqip Sermia Glacier using a remotely controlled UAV
Guillaume Jouvet, Eef van Dongen, Martin P. Lüthi, and Andreas Vieli
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2019-6,https://doi.org/10.5194/gi-2019-6, 2019
Manuscript under review for GI
Calving relation for tidewater glaciers based on detailed stress field analysis
Rémy Mercenier, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 12, 721–739, https://doi.org/10.5194/tc-12-721-2018,https://doi.org/10.5194/tc-12-721-2018, 2018
Short summary
Bulk meltwater flow and liquid water content of snowpacks mapped using the electrical self-potential (SP) method
Sarah S. Thompson, Bernd Kulessa, Richard L. H. Essery, and Martin P. Lüthi
The Cryosphere, 10, 433–444, https://doi.org/10.5194/tc-10-433-2016,https://doi.org/10.5194/tc-10-433-2016, 2016
Short summary
Related subject area  
Ocean Interactions
Wave energy attenuation in fields of colliding ice floes – Part 2: A laboratory case study
Agnieszka Herman, Sukun Cheng, and Hayley H. Shen
The Cryosphere, 13, 2901–2914, https://doi.org/10.5194/tc-13-2901-2019,https://doi.org/10.5194/tc-13-2901-2019, 2019
Short summary
Melt at grounding line controls observed and future retreat of Smith, Pope, and Kohler glaciers
David A. Lilien, Ian Joughin, Benjamin Smith, and Noel Gourmelen
The Cryosphere, 13, 2817–2834, https://doi.org/10.5194/tc-13-2817-2019,https://doi.org/10.5194/tc-13-2817-2019, 2019
Short summary
Spatiotemporal distributions of icebergs in a temperate fjord: Columbia Fjord, Alaska
Sarah U. Neuhaus, Slawek M. Tulaczyk, and Carolyn Branecky Begeman
The Cryosphere, 13, 1785–1799, https://doi.org/10.5194/tc-13-1785-2019,https://doi.org/10.5194/tc-13-1785-2019, 2019
Short summary
Sensitivity of a calving glacier to ice–ocean interactions under climate change: new insights from a 3-D full-Stokes model
Joe Todd, Poul Christoffersen, Thomas Zwinger, Peter Råback, and Douglas I. Benn
The Cryosphere, 13, 1681–1694, https://doi.org/10.5194/tc-13-1681-2019,https://doi.org/10.5194/tc-13-1681-2019, 2019
Short summary
Exploring mechanisms responsible for tidal modulation in flow of the Filchner-Ronne Ice Shelf
Sebastian H. R. Rosier and G. Hilmar Gudmundsson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-79,https://doi.org/10.5194/tc-2019-79, 2019
Revised manuscript accepted for TC
Short summary
Cited articles  
Amundson, J. M., Truffer, M., Lüthi, M. P., Fahnestock, M., Motyka, R. J., and West, M.: Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland, Geophys. Res. Lett., 35, L22501, https://doi.org/10.1029/2008GL035281, 2008.
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M., and Motyka, R.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010.
Amundson, J. M., Clinton, J. F., Fahnestock, M., Truffer, M., Lüthi, M. P., and Motyka, R. J.: Observing calving-generated ocean waves with coastal broadband seismometers, Jakobshavn Isbræ, Greenland, Ann. Glaciol., 60, 79–84, https://doi.org/10.3189/2012/AoG60A200, 2012.
Bauer, A.: Glaciologie Groenland II. Le glacier de l'Eqe. 6, Tech. rep., Expéditions Polaires Francaises, Hermann, Paris, 118 pp., 1955.
Bauer, A.: Le glacier de l'Eqe (Eqip Sermia). Mouvement et variations du front (1959), Tech. Rep. 2, Expédition glaciologique internationale au Groenland (EGIG), Meddelelser om Grønland, Reitzel, København, 1968.
Publications Copernicus
Download
Short summary
Glaciers flowing into the ocean sometimes release huge pieces of ice and cause violent tsunami waves which, upon landfall, can cause severe destruction. During an exceptionally well-documented event at Eqip Sermia, west Greenland, the collapse of a 200 m high ice cliff caused a tsunami wave of 50 m height, traveling at a speed exceeding 100 km h−1. This tsunami wave was filmed from a tour boat, and was simultaneously observed with several instruments, as was the run-up of 15 m on the shore.
Glaciers flowing into the ocean sometimes release huge pieces of ice and cause violent tsunami...
Citation