Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 11, issue 3
The Cryosphere, 11, 1283-1296, 2017
https://doi.org/10.5194/tc-11-1283-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 11, 1283-1296, 2017
https://doi.org/10.5194/tc-11-1283-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 May 2017

Research article | 30 May 2017

Iceberg calving of Thwaites Glacier, West Antarctica: full-Stokes modeling combined with linear elastic fracture mechanics

Hongju Yu et al.
Data sets

Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet SystemModel (ISSM) E. Larour, H. Seroussi, M. Morlighem, and E. Rignot https://doi.org/10.1029/2011JF002140

Publications Copernicus
Download
Short summary
We combine 2-D ice flow model with linear elastic fracture mechanics (LEFM) to model the calving behavior of Thwaites Glacier, West Antarctica. We find the combination of full-Stokes (FS) model and LEFM produces crevasses that are consistent with observations. We also find that calving is enhanced with pre-existing surface crevasses, shorter ice shelves or undercut at the ice shelf front. We conclude that the FS/LEFM combination is capable of constraining crevasse formation and iceberg calving.
We combine 2-D ice flow model with linear elastic fracture mechanics (LEFM) to model the calving...
Citation
Share