Articles | Volume 11, issue 3
https://doi.org/10.5194/tc-11-1327-2017
https://doi.org/10.5194/tc-11-1327-2017
Brief communication
 | 
06 Jun 2017
Brief communication |  | 06 Jun 2017

Brief communication: The global signature of post-1900 land ice wastage on vertical land motion

Riccardo E. M. Riva, Thomas Frederikse, Matt A. King, Ben Marzeion, and Michiel R. van den Broeke

Related authors

Can rifts alter ocean dynamics beneath ice shelves?
Mattia Poinelli, Michael Schodlok, Eric Larour, Miren Vizcaino, and Riccardo Riva
The Cryosphere, 17, 2261–2283, https://doi.org/10.5194/tc-17-2261-2023,https://doi.org/10.5194/tc-17-2261-2023, 2023
Short summary
Regionalizing the sea-level budget with machine learning techniques
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen
Ocean Sci., 19, 17–41, https://doi.org/10.5194/os-19-17-2023,https://doi.org/10.5194/os-19-17-2023, 2023
Short summary
Trends and uncertainties of mass-driven sea-level change in the satellite altimetry era
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, and Aimée B. A. Slangen
Earth Syst. Dynam., 13, 1351–1375, https://doi.org/10.5194/esd-13-1351-2022,https://doi.org/10.5194/esd-13-1351-2022, 2022
Short summary
A global semi-empirical glacial isostatic adjustment (GIA) model based on Gravity Recovery and Climate Experiment (GRACE) data
Yu Sun and Riccardo E. M. Riva
Earth Syst. Dynam., 11, 129–137, https://doi.org/10.5194/esd-11-129-2020,https://doi.org/10.5194/esd-11-129-2020, 2020
Short summary
The impact of upwelling on the intensification of anticyclonic ocean eddies in the Caribbean Sea
Carine G. van der Boog, Julie D. Pietrzak, Henk A. Dijkstra, Nils Brüggemann, René M. van Westen, Rebecca K. James, Tjeerd J. Bouma, Riccardo E. M. Riva, D. Cornelis Slobbe, Roland Klees, Marcel Zijlema, and Caroline A. Katsman
Ocean Sci., 15, 1419–1437, https://doi.org/10.5194/os-15-1419-2019,https://doi.org/10.5194/os-15-1419-2019, 2019
Short summary

Related subject area

Climate Interactions
Triggers of the 2022 Larsen B multi-year landfast sea ice breakout and initial glacier response
Naomi E. Ochwat, Ted A. Scambos, Alison F. Banwell, Robert S. Anderson, Michelle L. Maclennan, Ghislain Picard, Julia A. Shates, Sebastian Marinsek, Liliana Margonari, Martin Truffer, and Erin C. Pettit
The Cryosphere, 18, 1709–1731, https://doi.org/10.5194/tc-18-1709-2024,https://doi.org/10.5194/tc-18-1709-2024, 2024
Short summary
Projection of snowfall extremes in the French Alps as a function of elevation and global warming level
Erwan Le Roux, Guillaume Evin, Raphaëlle Samacoïts, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 17, 4691–4704, https://doi.org/10.5194/tc-17-4691-2023,https://doi.org/10.5194/tc-17-4691-2023, 2023
Short summary
Forced and internal components of observed Arctic sea-ice changes
Jakob Simon Dörr, David B. Bonan, Marius Årthun, Lea Svendsen, and Robert C. J. Wills
The Cryosphere, 17, 4133–4153, https://doi.org/10.5194/tc-17-4133-2023,https://doi.org/10.5194/tc-17-4133-2023, 2023
Short summary
Changes in March mean snow water equivalent since the mid-20th century and the contributing factors in reanalyses and CMIP6 climate models
Jouni Räisänen
The Cryosphere, 17, 1913–1934, https://doi.org/10.5194/tc-17-1913-2023,https://doi.org/10.5194/tc-17-1913-2023, 2023
Short summary
Climatic control of the surface mass balance of the Patagonian Icefields
Tomás Carrasco-Escaff, Maisa Rojas, René Darío Garreaud, Deniz Bozkurt, and Marius Schaefer
The Cryosphere, 17, 1127–1149, https://doi.org/10.5194/tc-17-1127-2023,https://doi.org/10.5194/tc-17-1127-2023, 2023
Short summary

Cited articles

Bevis, M., Wahr, J., Khan, S. A., Madsen, F. B., Brown, A., Willis, M., Kendrick, E., Knudsen, P., Box, J. E., van Dam, T., and Caccamise, D. J.: Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change, Proceedings of the National Academy of Sciences, 109, 11944–11948, 2012.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea Level Change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Farrell, W. E. and Clark, J. A.: On postglacial sea level, Geophys. J. Int., 46, 647–667, 1976.
Frederikse, T., Riva, R., Slobbe, C., Broerse, T., and Verlaan, M.: Estimating decadal variability in sea level from tide gauge records: An application to the North Sea, J. Geophys. Res.-Oceans, 121, 1529–1545, https://doi.org/10.1002/2015JC011174, 2016.
Hamlington, B. D., Thompson, P., Hammond, W. C., Blewitt, G., and Ray, R. D.: Assessing the impact of vertical land motion on twentieth century global mean sea level estimates, J. Geophys. Res.-Oceans, 121, 4980–4993, 2016.
Download
Short summary
The reduction of ice masses stored on land has made an important contribution to sea-level rise over the last century, as well as changed the Earth's shape. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have varied strongly throughout the last century, which affects the interpretation and extrapolation of recent observations of vertical land motion and sea-level change.