Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 11, issue 3
The Cryosphere, 11, 1333–1350, 2017
https://doi.org/10.5194/tc-11-1333-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Climate–carbon–cryosphere interactions in the...

The Cryosphere, 11, 1333–1350, 2017
https://doi.org/10.5194/tc-11-1333-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 09 Jun 2017

Research article | 09 Jun 2017

Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea

Ira Leifer et al.
Viewed  
Total article views: 2,543 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,144 1,283 116 2,543 226 50 117
  • HTML: 1,144
  • PDF: 1,283
  • XML: 116
  • Total: 2,543
  • Supplement: 226
  • BibTeX: 50
  • EndNote: 117
Views and downloads (calculated since 07 Jul 2016)
Cumulative views and downloads (calculated since 07 Jul 2016)
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 13 Nov 2019
Publications Copernicus
Download
Short summary
Vast Arctic methane deposits may alter global climate and require remote sensing (RS) to map. Sonar has great promise, but quantitative inversion based on theory is challenged by multiple bubble acoustical scattering in plumes. We demonstrate use of a real-world in situ bubble plume calibration using a bubble model to correct for differences in the calibration and seep plumes. Spatial seep sonar maps were then used to improve understanding of subsurface geologic controls.
Vast Arctic methane deposits may alter global climate and require remote sensing (RS) to map....
Citation