Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 11, issue 3
The Cryosphere, 11, 1441–1463, 2017
https://doi.org/10.5194/tc-11-1441-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 11, 1441–1463, 2017
https://doi.org/10.5194/tc-11-1441-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Jun 2017

Research article | 28 Jun 2017

Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia

Sebastian Westermann et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Sebastian Westermann on behalf of the Authors (13 Dec 2016)  Author's response    Manuscript
ED: Reconsider after major revisions (06 Mar 2017) by Stephan Gruber
ED: Referee Nomination & Report Request started (06 Mar 2017) by Stephan Gruber
RR by Anonymous Referee #3 (17 Mar 2017)
RR by Anonymous Referee #1 (20 Mar 2017)
ED: Publish subject to minor revisions (Editor review) (09 Apr 2017) by Stephan Gruber
AR by Sebastian Westermann on behalf of the Authors (05 May 2017)  Author's response    Manuscript
ED: Publish as is (21 May 2017) by Stephan Gruber
Publications Copernicus
Download
Short summary
We demonstrate a remote-sensing-based scheme estimating the evolution of ground temperature and active layer thickness by means of a ground thermal model. A comparison to in situ observations from the Lena River delta in Siberia indicates that the model is generally capable of reproducing the annual temperature regime and seasonal thawing of the ground. The approach could hence be a first step towards remote detection of ground thermal conditions in permafrost areas.
We demonstrate a remote-sensing-based scheme estimating the evolution of ground temperature and...
Citation