Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 11, issue 1
The Cryosphere, 11, 17–32, 2017
https://doi.org/10.5194/tc-11-17-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 11, 17–32, 2017
https://doi.org/10.5194/tc-11-17-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Jan 2017

Research article | 02 Jan 2017

Climate change threatens archaeologically significant ice patches: insights into their age, internal structure, mass balance and climate sensitivity

Rune Strand Ødegård1, Atle Nesje2, Ketil Isaksen3, Liss Marie Andreassen4, Trond Eiken5, Margit Schwikowski6, and Chiara Uglietti6 Rune Strand Ødegård et al.
  • 1Norwegian University of Science and Technology, Gjøvik, Norway
  • 2University of Bergen, Bergen, Norway
  • 3Norwegian Meteorological Institute, Oslo, Norway
  • 4Norwegian Water Resources and Energy Directorate, Oslo, Norway
  • 5Department of Geosciences, University of Oslo, Oslo, Norway
  • 6Paul Scherrer Institute, Villigen, Switzerland

Abstract. Despite numerous spectacular archaeological discoveries worldwide related to melting ice patches and the emerging field of glacial archaeology, governing processes related to ice patch development during the Holocene and their sensitivity to climate change are still largely unexplored. Here we present new results from an extensive 6-year (2009–2015) field experiment at the Juvfonne ice patch in Jotunheimen in central southern Norway. Our results show that the ice patch has existed continuously since the late Mesolithic period. Organic-rich layers and carbonaceous aerosols embedded in clear ice show ages spanning from modern at the surface to ca. 7600 cal years BP at the bottom. This is the oldest dating of ice in mainland Norway. The expanding ice patch covered moss mats appearing along the margin of Juvfonne about 2000 years ago. During the study period, the mass balance record showed a strong negative balance, and the annual balance is highly asymmetric over short distances. Snow accumulation is poorly correlated with estimated winter precipitation, and single storm events may contribute significantly to the total winter balance. Snow accumulation is approx. 20 % higher in the frontal area compared to the upper central part of the ice patch. There is sufficient meltwater to bring the permeable snowpack to an isothermal state within a few weeks in early summer. Below the seasonal snowpack, ice temperatures are between −2 and −4 °C. Juvfonne has clear ice stratification of isochronic origin.

Publications Copernicus
Download
Short summary
Despite numerous spectacular archaeological discoveries worldwide related to melting ice, governing processes related to ice patch development are still largely unexplored. We present new results from Jotunheimen in central southern Norway showing that the Juvfonne ice patch has existed continuously since ca. 7600 cal years BP. This is the oldest dating of ice in mainland Norway. Moss mats along the margin of Juvfonne in 2014 were covered by the expanding ice patch about 2000 years ago.
Despite numerous spectacular archaeological discoveries worldwide related to melting ice,...
Citation