Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year
    5.558
  • CiteScore value: 4.84 CiteScore
    4.84
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 3.034 SJR 3.034
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
  • h5-index value: 52 h5-index 52
Volume 11, issue 4
The Cryosphere, 11, 1987-2002, 2017
https://doi.org/10.5194/tc-11-1987-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 11, 1987-2002, 2017
https://doi.org/10.5194/tc-11-1987-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 Aug 2017

Research article | 30 Aug 2017

New methodology to estimate Arctic sea ice concentration from SMOS combining brightness temperature differences in a maximum-likelihood estimator

Carolina Gabarro et al.
Related authors  
Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records
Thomas Lavergne, Atle Macdonald Sørensen, Stefan Kern, Rasmus Tonboe, Dirk Notz, Signe Aaboe, Louisa Bell, Gorm Dybkjær, Steinar Eastwood, Carolina Gabarro, Georg Heygster, Mari Anne Killie, Matilde Brandt Kreiner, John Lavelle, Roberto Saldo, Stein Sandven, and Leif Toudal Pedersen
The Cryosphere, 13, 49-78, https://doi.org/10.5194/tc-13-49-2019,https://doi.org/10.5194/tc-13-49-2019, 2019
Short summary
Related subject area  
Remote Sensing
Snow-driven uncertainty in CryoSat-2-derived Antarctic sea ice thickness – insights from McMurdo Sound
Daniel Price, Iman Soltanzadeh, Wolfgang Rack, and Ethan Dale
The Cryosphere, 13, 1409-1422, https://doi.org/10.5194/tc-13-1409-2019,https://doi.org/10.5194/tc-13-1409-2019, 2019
Short summary
Instantaneous sea ice drift speed from TanDEM-X interferometry
Dyre Oliver Dammann, Leif E. B. Eriksson, Joshua M. Jones, Andrew R. Mahoney, Roland Romeiser, Franz J. Meyer, Hajo Eicken, and Yasushi Fukamachi
The Cryosphere, 13, 1395-1408, https://doi.org/10.5194/tc-13-1395-2019,https://doi.org/10.5194/tc-13-1395-2019, 2019
Short summary
Estimating the snow depth, the snow–ice interface temperature, and the effective temperature of Arctic sea ice using Advanced Microwave Scanning Radiometer 2 and ice mass balance buoy data
Lise Kilic, Rasmus Tage Tonboe, Catherine Prigent, and Georg Heygster
The Cryosphere, 13, 1283-1296, https://doi.org/10.5194/tc-13-1283-2019,https://doi.org/10.5194/tc-13-1283-2019, 2019
Short summary
Assessment of contemporary satellite sea ice thickness products for Arctic sea ice
Heidi Sallila, Sinéad Louise Farrell, Joshua McCurry, and Eero Rinne
The Cryosphere, 13, 1187-1213, https://doi.org/10.5194/tc-13-1187-2019,https://doi.org/10.5194/tc-13-1187-2019, 2019
Short summary
Baffin Bay sea ice inflow and outflow: 1978–1979 to 2016–2017
Haibo Bi, Zehua Zhang, Yunhe Wang, Xiuli Xu, Yu Liang, Jue Huang, Yilin Liu, and Min Fu
The Cryosphere, 13, 1025-1042, https://doi.org/10.5194/tc-13-1025-2019,https://doi.org/10.5194/tc-13-1025-2019, 2019
Short summary
Cited articles  
AMAP: Arctic Climate Issues 2011: Changes in Arctic Snow, Water, Ice and Permafrost, SWIPA 2011 Overview Report, Arctic Monitoring and Assessment Programme (AMAP), Oslo, xi + 97 pp., 2012.
Becker, F. and Choudhury, B. J.: Relative Sensitivity of Normalized Difference Vegetation Index (NDVI) and Microwave Polarization Difference Index (MPDI) for Vegetation and Desertification Monitoring, Remote Sens. Environ., 24, 297–311, https://doi.org/10.1016/0034-4257(88)90031-4, 1988.
Brodzik, M. J. and Knowles, K. W.: EASE-Grid: A Versatile Set of Equal-Area Projections and Grids, in: Discrete Global Grids, edited by: Goodchild, M., National Center for Geographic Information & Analysis, Santa Barbara, California, USA, 2002.
Burke, W., Schmugge, T., and Paris, J.: Comparison of 2.8- and 21-cm Microwave Radiometer Observations Over Soils With Emission Model Calculations, J. Geophys. Res., 84, 287–294, https://doi.org/10.1029/JC084iC01p00287, 1979.
Camps, A., Vall-llossera, M., Duffo, N., Torres, F., and Corbella, I.: Performance of Sea Surface Salinity and Soil Moisture Retrieval Algorithms with Different Ancillary Data Sets in 2D L-band Aperture Synthesis Interferometic Radiometers, IEEE T. Geosci. Remote, 43, 1189–1200, https://doi.org/10.1109/TGRS.2004.842096, 2005.
Publications Copernicus
Download
Short summary
We present a new method to estimate sea ice concentration in the Arctic Ocean using different brightness temperature observations from the Soil Moisture Ocean Salinity (SMOS) satellite. The method employs a maximum-likelihood estimator. Observations at L-band frequencies such as those from SMOS (i.e. 1.4 GHz) are advantageous to remote sensing of sea ice because the atmosphere is virtually transparent at that frequency and little affected by physical temperature changes.
We present a new method to estimate sea ice concentration in the Arctic Ocean using different...
Citation