Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 11, issue 5
The Cryosphere, 11, 2149–2174, 2017
https://doi.org/10.5194/tc-11-2149-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 11, 2149–2174, 2017
https://doi.org/10.5194/tc-11-2149-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 Sep 2017

Research article | 08 Sep 2017

Exceptional retreat of Novaya Zemlya's marine-terminating outlet glaciers between 2000 and 2013

J. Rachel Carr et al.
Related authors  
Supraglacial pond evolution in the Everest region, central Himalaya, 2015–2018
Caroline J. Taylor and J. Rachel Carr
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-12,https://doi.org/10.5194/tc-2019-12, 2019
Publication in TC not foreseen
Short summary
Velocity response of Petermann Glacier, northwest Greenland, to past and future calving events
Emily A. Hill, G. Hilmar Gudmundsson, J. Rachel Carr, and Chris R. Stokes
The Cryosphere, 12, 3907–3921, https://doi.org/10.5194/tc-12-3907-2018,https://doi.org/10.5194/tc-12-3907-2018, 2018
Short summary
Dynamic changes in outlet glaciers in northern Greenland from 1948 to 2015
Emily A. Hill, J. Rachel Carr, Chris R. Stokes, and G. Hilmar Gudmundsson
The Cryosphere, 12, 3243–3263, https://doi.org/10.5194/tc-12-3243-2018,https://doi.org/10.5194/tc-12-3243-2018, 2018
Short summary
UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet
J. C. Ryan, A. L. Hubbard, J. E. Box, J. Todd, P. Christoffersen, J. R. Carr, T. O. Holt, and N. Snooke
The Cryosphere, 9, 1–11, https://doi.org/10.5194/tc-9-1-2015,https://doi.org/10.5194/tc-9-1-2015, 2015
Short summary
Related subject area  
Arctic (e.g. Greenland)
Greenland Ice Sheet late-season melt: investigating multiscale drivers of K-transect events
Thomas J. Ballinger, Thomas L. Mote, Kyle Mattingly, Angela C. Bliss, Edward Hanna, Dirk van As, Melissa Prieto, Saeideh Gharehchahi, Xavier Fettweis, Brice Noël, Paul C. J. P. Smeets, Carleen H. Reijmer, Mads H. Ribergaard, and John Cappelen
The Cryosphere, 13, 2241–2257, https://doi.org/10.5194/tc-13-2241-2019,https://doi.org/10.5194/tc-13-2241-2019, 2019
Short summary
Arctic freshwater fluxes: sources, tracer budgets and inconsistencies
Alexander Forryan, Sheldon Bacon, Takamasa Tsubouchi, Sinhué Torres-Valdés, and Alberto C. Naveira Garabato
The Cryosphere, 13, 2111–2131, https://doi.org/10.5194/tc-13-2111-2019,https://doi.org/10.5194/tc-13-2111-2019, 2019
Short summary
Induced surface fluxes: a new framework for attributing Arctic sea ice volume balance biases to specific model errors
Alex West, Mat Collins, Ed Blockley, Jeff Ridley, and Alejandro Bodas-Salcedo
The Cryosphere, 13, 2001–2022, https://doi.org/10.5194/tc-13-2001-2019,https://doi.org/10.5194/tc-13-2001-2019, 2019
Short summary
Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution
Caixin Wang, Robert M. Graham, Keguang Wang, Sebastian Gerland, and Mats A. Granskog
The Cryosphere, 13, 1661–1679, https://doi.org/10.5194/tc-13-1661-2019,https://doi.org/10.5194/tc-13-1661-2019, 2019
Short summary
Benchmark seasonal prediction skill estimates based on regional indices
John E. Walsh, J. Scott Stewart, and Florence Fetterer
The Cryosphere, 13, 1073–1088, https://doi.org/10.5194/tc-13-1073-2019,https://doi.org/10.5194/tc-13-1073-2019, 2019
Short summary
Cited articles  
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and Motyka, R. J.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010.
Belkin, I. M., Levitus, S., Antonov, J., and Malmberg, S.-A.: “Great salinity anomalies” in the North Atlantic, Prog. Oceanogr., 41, 1–68, 1998.
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the dynamics of calving glaciers, Earth Sci. Rev., 82, 143–179, 2007.
Beszczynska-Möller, A., Fahrbach, E., Schauer, U., and Hansen, E.: Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010, ICES J. Mar. Sci., 69, 852–863, https://doi.org/10.1093/icesjms/fss056, 2012.
Bindschadler, R., Harrison, W. D., Raymond, C. F., and Crosson, R.: Geometry and dynamics of a surge-type glacier, J. Glaciol., 18, 181–194, 1977.
Publications Copernicus
Download
Short summary
Glaciers on Novaya Zemlya (NVZ) retreated rapidly between 2000 and 2013. This was far faster than the previous 25 years, but retreat then slowed from 2013 onward. This may result from changes in broadscale climatic patterns. Glaciers ending in lakes retreated at a similar rate to those ending in the ocean, and retreat rates were very consistent between glaciers, which contrasts with previous studies.
Glaciers on Novaya Zemlya (NVZ) retreated rapidly between 2000 and 2013. This was far faster...
Citation