Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 11, issue 6
The Cryosphere, 11, 2611–2632, 2017
https://doi.org/10.5194/tc-11-2611-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 11, 2611–2632, 2017
https://doi.org/10.5194/tc-11-2611-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 17 Nov 2017

Research article | 17 Nov 2017

Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo

Joseph M. Cook et al.
Viewed  
Total article views: 2,797 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,761 955 81 2,797 28 84
  • HTML: 1,761
  • PDF: 955
  • XML: 81
  • Total: 2,797
  • BibTeX: 28
  • EndNote: 84
Views and downloads (calculated since 26 Apr 2017)
Cumulative views and downloads (calculated since 26 Apr 2017)
Viewed (geographical distribution)  
Total article views: 2,642 (including HTML, PDF, and XML) Thereof 2,631 with geography defined and 11 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 07 Dec 2019
Publications Copernicus
Download
Short summary
Biological growth darkens snow and ice, causing it to melt faster. This is often referred to as bioalbedo. Quantifying bioalbedo has not been achieved because of difficulties in isolating the biological contribution from the optical properties of ice and snow, and from inorganic impurities in field studies. In this paper, we provide a physical model that enables bioalbedo to be quantified from first principles and we use it to guide future field studies.
Biological growth darkens snow and ice, causing it to melt faster. This is often referred to as...
Citation