Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
The Cryosphere, 11, 2675-2690, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
21 Nov 2017
Detecting high spatial variability of ice shelf basal mass balance, Roi Baudouin Ice Shelf, Antarctica
Sophie Berger1, Reinhard Drews2, Veit Helm3, Sainan Sun1, and Frank Pattyn1 1Laboratoire de glaciologie, Université libre de Bruxelles, Brussels, Belgium
2Department of Geosciences, University of Tübingen, Tübingen, Germany
3Glaciology Section, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Abstract. Ice shelves control the dynamic mass loss of ice sheets through buttressing and their integrity depends on the spatial variability of their basal mass balance (BMB), i.e. the difference between refreezing and melting. Here, we present an improved technique – based on satellite observations – to capture the small-scale variability in the BMB of ice shelves. As a case study, we apply the methodology to the Roi Baudouin Ice Shelf, Dronning Maud Land, East Antarctica, and derive its yearly averaged BMB at 10 m horizontal gridding. We use mass conservation in a Lagrangian framework based on high-resolution surface velocities, atmospheric-model surface mass balance and hydrostatic ice-thickness fields (derived from TanDEM-X surface elevation). Spatial derivatives are implemented using the total-variation differentiation, which preserves abrupt changes in flow velocities and their spatial gradients. Such changes may reflect a dynamic response to localized basal melting and should be included in the mass budget. Our BMB field exhibits much spatial detail and ranges from −14.7 to 8.6 m a−1 ice equivalent. Highest melt rates are found close to the grounding line where the pressure melting point is high, and the ice shelf slope is steep. The BMB field agrees well with on-site measurements from phase-sensitive radar, although independent radar profiling indicates unresolved spatial variations in firn density. We show that an elliptical surface depression (10 m deep and with an extent of 0.7 km × 1.3 km) lowers by 0.5 to 1.4 m a−1, which we tentatively attribute to a transient adaptation to hydrostatic equilibrium. We find evidence for elevated melting beneath ice shelf channels (with melting being concentrated on the channel's flanks). However, farther downstream from the grounding line, the majority of ice shelf channels advect passively (i.e. no melting nor refreezing) toward the ice shelf front. Although the absolute, satellite-based BMB values remain uncertain, we have high confidence in the spatial variability on sub-kilometre scales. This study highlights expected challenges for a full coupling between ice and ocean models.

Citation: Berger, S., Drews, R., Helm, V., Sun, S., and Pattyn, F.: Detecting high spatial variability of ice shelf basal mass balance, Roi Baudouin Ice Shelf, Antarctica, The Cryosphere, 11, 2675-2690,, 2017.
Publications Copernicus
Short summary
Floating ice shelves act as a plug for the Antarctic ice sheet. The efficiency of this ice plug depends on how and how much the ocean melts the ice from below. This study relies on satellite imagery and a Lagrangian approach to map in detail the basal mass balance of an Antarctic ice shelf. Although the large-scale melting pattern of the ice shelf agrees with previous studies, our technique successfully detects local variability (< 1 km) in the basal melting of the ice shelf.
Floating ice shelves act as a plug for the Antarctic ice sheet. The efficiency of this ice plug...