Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 11, issue 6 | Copyright
The Cryosphere, 11, 2711-2725, 2017
https://doi.org/10.5194/tc-11-2711-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Nov 2017

Research article | 24 Nov 2017

Wave-induced stress and breaking of sea ice in a coupled hydrodynamic discrete-element wave–ice model

Agnieszka Herman
Related authors
Floe-size distributions in laboratory ice broken by waves
Agnieszka Herman, Karl-Ulrich Evers, and Nils Reimer
The Cryosphere, 12, 685-699, https://doi.org/10.5194/tc-12-685-2018,https://doi.org/10.5194/tc-12-685-2018, 2018
Discrete-Element bonded-particle Sea Ice model DESIgn, version 1.3a – model description and implementation
Agnieszka Herman
Geosci. Model Dev., 9, 1219-1241, https://doi.org/10.5194/gmd-9-1219-2016,https://doi.org/10.5194/gmd-9-1219-2016, 2016
Variability of sea ice deformation rates in the Arctic and their relationship with basin-scale wind forcing
A. Herman and O. Glowacki
The Cryosphere, 6, 1553-1559, https://doi.org/10.5194/tc-6-1553-2012,https://doi.org/10.5194/tc-6-1553-2012, 2012
Related subject area
Sea Ice
Interannual sea ice thickness variability in the Bay of Bothnia
Iina Ronkainen, Jonni Lehtiranta, Mikko Lensu, Eero Rinne, Jari Haapala, and Christian Haas
The Cryosphere, 12, 3459-3476, https://doi.org/10.5194/tc-12-3459-2018,https://doi.org/10.5194/tc-12-3459-2018, 2018
Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness
Edward W. Blockley and K. Andrew Peterson
The Cryosphere, 12, 3419-3438, https://doi.org/10.5194/tc-12-3419-2018,https://doi.org/10.5194/tc-12-3419-2018, 2018
Brief communication: Solar radiation management not as effective as CO2 mitigation for Arctic sea ice loss in hitting the 1.5 and 2 °C COP climate targets
Jeff K. Ridley and Edward W. Blockley
The Cryosphere, 12, 3355-3360, https://doi.org/10.5194/tc-12-3355-2018,https://doi.org/10.5194/tc-12-3355-2018, 2018
Reflective properties of melt ponds on sea ice
Aleksey Malinka, Eleonora Zege, Larysa Istomina, Georg Heygster, Gunnar Spreen, Donald Perovich, and Chris Polashenski
The Cryosphere, 12, 1921-1937, https://doi.org/10.5194/tc-12-1921-2018,https://doi.org/10.5194/tc-12-1921-2018, 2018
The color of melt ponds on Arctic sea ice
Peng Lu, Matti Leppäranta, Bin Cheng, Zhijun Li, Larysa Istomina, and Georg Heygster
The Cryosphere, 12, 1331-1345, https://doi.org/10.5194/tc-12-1331-2018,https://doi.org/10.5194/tc-12-1331-2018, 2018
Cited articles
Ardhuin, F., Stopa, J., Chapron, B., Collard, F., Smith, M., Thomson, J., Doble, M., Blomquist, B., Persson, O., Collins, C., and Wadhams, P.: Measuring ocean waves in sea ice using SAR imagery: A quasi-deterministic approach evaluated with Sentinel-1 and in situ data, Remote Sens. Environ., 189, 211–222, https://doi.org/10.1016/j.rse.2016.11.024, 2017.
Asplin, M., Galley, R., Barber, D., and Prinsenberg, S.: Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms, J. Geophys. Res., 117, C06025, https://doi.org/10.1029/2011JC007221, 2012.
Asplin, M., Scharien, R., Else, B., Howell, S., Barber, D., Papakyriakou, T., and Prinsenberg, S.: Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes, J. Geophys. Res., 119, 2327–2343, https://doi.org/10.1002/2013JC009557, 2014.
Bennetts, L. G., O'Farrell, S., and Uotila, P.: Brief communication: Impacts of ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a stand-alone version of the CICE sea-ice model, The Cryosphere, 11, 1035–1040, https://doi.org/10.5194/tc-11-1035-2017, 2017.
Collins, C., Rogers, W., Marchenko, A., and Babanin, A.: In situ measurements of an energetic wave event in the Arctic marginal ice zone, Geophys. Res. Lett., 42, 1863–1870, https://doi.org/10.1002/2015GL063063, 2015.
Publications Copernicus
Download
Short summary
It is often assumed that ocean waves break sea ice into floes with sizes depending on wavelength. The results of this modeling study (in agreement with some earlier observations and models) suggest that this is not the case; instead the sizes of ice floes produced by wave breaking depend only on ice thickness and mechanical properties. This may have important consequences for predicting sea ice response to oceanic and atmospheric forcing in regions where sea ice is influenced by waves.
It is often assumed that ocean waves break sea ice into floes with sizes depending on...
Citation
Share