Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 11, issue 1
The Cryosphere, 11, 303-317, 2017
https://doi.org/10.5194/tc-11-303-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 11, 303-317, 2017
https://doi.org/10.5194/tc-11-303-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 Jan 2017

Research article | 30 Jan 2017

The past, present, and future viscous heat dissipation available for Greenland subglacial conduit formation

Kenneth D. Mankoff1 and Slawek M. Tulaczyk2 Kenneth D. Mankoff and Slawek M. Tulaczyk
  • 1Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA
  • 2Earth and Planetary Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA

Abstract. Basal hydrology of the Greenland Ice Sheet (GIS) influences its dynamics and mass balance through basal lubrication and ice–bed decoupling or efficient water removal and ice–bed coupling. Variations in subglacial water pressure through the seasonal evolution of the subglacial hydrological system help control ice velocity. Near the ice sheet margin, large basal conduits are melted by the viscous heat dissipation (VHD) from surface runoff routed to the bed. These conduits may lead to efficient drainage systems that lower subglacial water pressure, increase basal effective stress, and reduce ice velocity. In this study we quantify the energy available for VHD historically at present and under future climate scenarios. At present, 345km3 of annual runoff delivers 66GW to the base of the ice sheet per year. These values are already ∼50% more than the historical 1960–1999 value of 46GW. By 2100 under IPCC AR5 RCP8.5 (RCP4.5) scenarios, 1278 (524)km3 of runoff may deliver 310 (110)GW to the ice sheet base. Hence, the ice sheet may experience a 5-to-7-fold increase in VHD in the near future which will enhance opening of subglacial conduits near the margin and will warm basal ice in the interior. The other significant basal heat source is geothermal heat flux (GHF), which has an estimated value of 36 GW within the present-day VHD area. With increasing surface meltwater penetration to the bed the basal heat budget in the active basal hydrology zone of the GIS will be increasingly dominated by VHD and relatively less sensitive to GHF, which may result in spatial changes in the ice flow field and in its seasonal variability.

Please read the corrigendum first before accessing the article.
Publications Copernicus
Download
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
There may be a ~ 7-fold increases in heat at the bed of Greenland by the end of the century due to increased runoff. The impact this will have on the ice is uncertain, but recent results indicate more heat may reduced glacier velocity near the margin, and accelerate it in the interior. We used existing model output of Greenland surface melt, ice sheet surface, and basal topography. All code needed to recreate the results, using free software, is included.
There may be a ~ 7-fold increases in heat at the bed of Greenland by the end of the century due...
Citation
Share