Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 11, issue 1
The Cryosphere, 11, 319-329, 2017
https://doi.org/10.5194/tc-11-319-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 11, 319-329, 2017
https://doi.org/10.5194/tc-11-319-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 31 Jan 2017

Research article | 31 Jan 2017

Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting

Rupert Michael Gladstone et al.
Related authors  
Simulated retreat of Jakobshavn Isbræ during the 21st century
Xiaoran Guo, Liyun Zhao, Rupert Gladstone, Sainan Sun, and John C. Moore
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-7,https://doi.org/10.5194/tc-2019-7, 2019
Revised manuscript under review for TC
Neutral equilibrium and forcing feedbacks in marine ice sheet modelling
Rupert M. Gladstone, Yuwei Xia, and John Moore
The Cryosphere, 12, 3605-3615, https://doi.org/10.5194/tc-12-3605-2018,https://doi.org/10.5194/tc-12-3605-2018, 2018
Short summary
Basal friction of Fleming Glacier, Antarctica – Part 1: Sensitivity of inversion to temperature and bedrock uncertainty
Chen Zhao, Rupert M. Gladstone, Roland C. Warner, Matt A. King, Thomas Zwinger, and Mathieu Morlighem
The Cryosphere, 12, 2637-2652, https://doi.org/10.5194/tc-12-2637-2018,https://doi.org/10.5194/tc-12-2637-2018, 2018
Short summary
Basal friction of Fleming Glacier, Antarctica – Part 2: Evolution from 2008 to 2015
Chen Zhao, Rupert M. Gladstone, Roland C. Warner, Matt A. King, Thomas Zwinger, and Mathieu Morlighem
The Cryosphere, 12, 2653-2666, https://doi.org/10.5194/tc-12-2653-2018,https://doi.org/10.5194/tc-12-2653-2018, 2018
Short summary
Simulated dynamic regrounding during marine ice sheet retreat
Lenneke M. Jong, Rupert M. Gladstone, Benjamin K. Galton-Fenzi, and Matt A. King
The Cryosphere, 12, 2425-2436, https://doi.org/10.5194/tc-12-2425-2018,https://doi.org/10.5194/tc-12-2425-2018, 2018
Short summary
Related subject area  
Numerical Modelling
Buoyant forces promote tidewater glacier iceberg calving through large basal stress concentrations
Matt Trevers, Antony J. Payne, Stephen L. Cornford, and Twila Moon
The Cryosphere, 13, 1877-1887, https://doi.org/10.5194/tc-13-1877-2019,https://doi.org/10.5194/tc-13-1877-2019, 2019
Short summary
Development of physically based liquid water schemes for Greenland firn-densification models
Vincent Verjans, Amber A. Leeson, C. Max Stevens, Michael MacFerrin, Brice Noël, and Michiel R. van den Broeke
The Cryosphere, 13, 1819-1842, https://doi.org/10.5194/tc-13-1819-2019,https://doi.org/10.5194/tc-13-1819-2019, 2019
Short summary
Validation of the sea ice surface albedo scheme of the regional climate model HIRHAM–NAOSIM using aircraft measurements during the ACLOUD/PASCAL campaigns
Evelyn Jäkel, Johannes Stapf, Manfred Wendisch, Marcel Nicolaus, Wolfgang Dorn, and Annette Rinke
The Cryosphere, 13, 1695-1708, https://doi.org/10.5194/tc-13-1695-2019,https://doi.org/10.5194/tc-13-1695-2019, 2019
Short summary
Regional grid refinement in an Earth system model: impacts on the simulated Greenland surface mass balance
Leonardus van Kampenhout, Alan M. Rhoades, Adam R. Herrington, Colin M. Zarzycki, Jan T. M. Lenaerts, William J. Sacks, and Michiel R. van den Broeke
The Cryosphere, 13, 1547-1564, https://doi.org/10.5194/tc-13-1547-2019,https://doi.org/10.5194/tc-13-1547-2019, 2019
Short summary
initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6
Hélène Seroussi, Sophie Nowicki, Erika Simon, Ayako Abe-Ouchi, Torsten Albrecht, Julien Brondex, Stephen Cornford, Christophe Dumas, Fabien Gillet-Chaulet, Heiko Goelzer, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Thomas Kleiner, Eric Larour, Gunter Leguy, William H. Lipscomb, Daniel Lowry, Matthias Mengel, Mathieu Morlighem, Frank Pattyn, Anthony J. Payne, David Pollard, Stephen F. Price, Aurélien Quiquet, Thomas J. Reerink, Ronja Reese, Christian B. Rodehacke, Nicole-Jeanne Schlegel, Andrew Shepherd, Sainan Sun, Johannes Sutter, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, and Tong Zhang
The Cryosphere, 13, 1441-1471, https://doi.org/10.5194/tc-13-1441-2019,https://doi.org/10.5194/tc-13-1441-2019, 2019
Short summary
Cited articles  
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016.
Budd, W., Keage, P. L., and Blundy, N. A.: Empirical studies of ice sliding, J. Glaciol., 23, 157–170, 1979.
Budd, W., Jenssen, D., and Smith, I.: A 3-dimensional time-dependent model of the West Antarctic Ice-Sheet, Ann. Glaciol., 5, 29–36, 1984.
Cornford, S. L., Martin, D. F., Graves, D. T., Ranken, D. F., Le Brocq, A. M., Gladstone, R. M., Payne, A. J., Ng, E., and Lipscomb, W. H.: Adaptive mesh, finite volume modeling of marine ice sheets, J. Comput. Phys., 232, 529–549, 2013.
Durand, G., Gagliardini, O., de Fleurian, B., Zwinger, T., and Le Meur, E.: Marine ice sheet dynamics: Hysteresis and neutral equilibrium, J. Geophys. Res.-Earth, 114, F03009, https://doi.org/10.1029/2008JF001170, 2009.
Publications Copernicus
Download
Short summary
Computer models are used to simulate the behaviour of glaciers and ice sheets. It has been found that such models are required to be run at very high resolution (which means high computational expense) in order to accurately represent the evolution of marine ice sheets (ice sheets resting on bedrock below sea level), in certain situations which depend on sub-glacial physical processes.
Computer models are used to simulate the behaviour of glaciers and ice sheets. It has been found...
Citation