Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 11, issue 1 | Copyright
The Cryosphere, 11, 363-380, 2017
https://doi.org/10.5194/tc-11-363-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Feb 2017

Research article | 01 Feb 2017

Generating synthetic fjord bathymetry for coastal Greenland

Christopher N. Williams et al.
Related authors
Development of an automatic delineation of cliff top and toe on very irregular planform coastlines (CliffMetrics v1.0)
Andres Payo, Bismarck Jigena Antelo, Martin Hurst, Monica Palaseanu-Lovejoy, Chris Williams, Gareth Jenkins, Kathryn Lee, David Favis-Mortlock, Andrew Barkwidth, and Michael A. Ellis
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-83,https://doi.org/10.5194/gmd-2018-83, 2018
Manuscript under review for GMD
A constraint upon the basal water distribution and basal thermal state of the Greenland Ice Sheet from radar bed-echoes
Thomas M. Jordan, Christopher N. Williams, Dustin M. Schroeder, Yasmina M. Martos, Michael A. Cooper, Martin J. Siegert, John D. Paden, Phillipe Huybrechts, and Jonathan L. Bamber
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-53,https://doi.org/10.5194/tc-2018-53, 2018
Revised manuscript under review for TC
Self-affine subglacial roughness: consequences for radar scattering and basal water discrimination in northern Greenland
Thomas M. Jordan, Michael A. Cooper, Dustin M. Schroeder, Christopher N. Williams, John D. Paden, Martin J. Siegert, and Jonathan L. Bamber
The Cryosphere, 11, 1247-1264, https://doi.org/10.5194/tc-11-1247-2017,https://doi.org/10.5194/tc-11-1247-2017, 2017
An ice-sheet-wide framework for englacial attenuation from ice-penetrating radar data
T. M. Jordan, J. L. Bamber, C. N. Williams, J. D. Paden, M. J. Siegert, P. Huybrechts, O. Gagliardini, and F. Gillet-Chaulet
The Cryosphere, 10, 1547-1570, https://doi.org/10.5194/tc-10-1547-2016,https://doi.org/10.5194/tc-10-1547-2016, 2016
Related subject area
Greenland
Greenland Ice Mapping Project: ice flow velocity variation at sub-monthly to decadal timescales
Ian Joughin, Ben E. Smith, and Ian Howat
The Cryosphere, 12, 2211-2227, https://doi.org/10.5194/tc-12-2211-2018,https://doi.org/10.5194/tc-12-2211-2018, 2018
Observations and modelling of algal growth on a snowpack in north-western Greenland
Yukihiko Onuma, Nozomu Takeuchi, Sota Tanaka, Naoko Nagatsuka, Masashi Niwano, and Teruo Aoki
The Cryosphere, 12, 2147-2158, https://doi.org/10.5194/tc-12-2147-2018,https://doi.org/10.5194/tc-12-2147-2018, 2018
Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery
Adriano Lemos, Andrew Shepherd, Malcolm McMillan, Anna E. Hogg, Emma Hatton, and Ian Joughin
The Cryosphere, 12, 2087-2097, https://doi.org/10.5194/tc-12-2087-2018,https://doi.org/10.5194/tc-12-2087-2018, 2018
Seasonal monitoring of melt and accumulation within the deep percolation zone of the Greenland Ice Sheet and comparison with simulations of regional climate modeling
Achim Heilig, Olaf Eisen, Michael MacFerrin, Marco Tedesco, and Xavier Fettweis
The Cryosphere, 12, 1851-1866, https://doi.org/10.5194/tc-12-1851-2018,https://doi.org/10.5194/tc-12-1851-2018, 2018
Brief communication: Improved simulation of the present-day Greenland firn layer (1960–2016)
Stefan R. M. Ligtenberg, Peter Kuipers Munneke, Brice P. Y. Noël, and Michiel R. van den Broeke
The Cryosphere, 12, 1643-1649, https://doi.org/10.5194/tc-12-1643-2018,https://doi.org/10.5194/tc-12-1643-2018, 2018
Cited articles
Arndt, J. E., Jokat, W., Dorschel, B., Myklebust, R., Dowdeswell, J. A., and Evans, J.: A new bathymetry of the Northeast Greenland continental shelf: Constraints on glacial and other processes, Geochem. Geophy. Geosy., 16, 3733–3753, https://doi.org/10.1002/2015GC005931, 2015.
Bai, X., Latecki, L. J., and Liu, W. Y.: Skeleton pruning by contour partitioning with discrete curve evolution, IEEE T. Pattern Anal., 29, 449–462, https://doi.org/10.1109/TPAMI.2007.59, 2007.
Bamber, J. L., Layberry, R. L., and Gogineni, S. P.: A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors, J. Geophys. Res., 106, 33773–33780, https://doi.org/10.1029/2001JD900054, 2001.
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E., and Steinhage, D.: A new bed elevation dataset for Greenland, The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, 2013.
Batchelor, C. L. and Dowdeswell, J. A.: The physiography of High Arctic cross-shelf troughs, Quaternary Sci. Rev., 92, 68–96, https://doi.org/10.1016/j.quascirev.2013.05.025, 2014.
Publications Copernicus
Download
Short summary
Knowledge of ice sheet bed topography and surrounding sea floor bathymetry is integral to the understanding of ice sheet processes. Existing elevation data products for Greenland underestimate fjord bathymetry due to sparse data availability. We present a new method to create physically based synthetic fjord bathymetry to fill these gaps, greatly improving on previously available datasets. This will assist in future elevation product development until further observations become available.
Knowledge of ice sheet bed topography and surrounding sea floor bathymetry is integral to the...
Citation
Share