Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 11, issue 1
The Cryosphere, 11, 517-529, 2017
https://doi.org/10.5194/tc-11-517-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 11, 517-529, 2017
https://doi.org/10.5194/tc-11-517-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Feb 2017

Research article | 16 Feb 2017

How much can we save? Impact of different emission scenarios on future snow cover in the Alps

Christoph Marty et al.
Viewed  
Total article views: 9,283 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
6,590 2,172 521 9,283 250 90 196
  • HTML: 6,590
  • PDF: 2,172
  • XML: 521
  • Total: 9,283
  • Supplement: 250
  • BibTeX: 90
  • EndNote: 196
Views and downloads (calculated since 13 Oct 2016)
Cumulative views and downloads (calculated since 13 Oct 2016)
Viewed (geographical distribution)  
Total article views: 9,081 (including HTML, PDF, and XML) Thereof 8,972 with geography defined and 109 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 18 Jan 2019
Publications Copernicus
Download
Short summary
We simulate the future snow cover in the Alps with the help of a snow model, which is fed by projected temperature and precipitation changes from a large set of climate models. The results demonstrate that snow below 1000 m is probably a rare guest at the end of the century. Moreover, even above 3000 m the simulations show a drastic decrease in snow depth. However, the results reveal that the projected snow cover reduction can be mitigated by 50 % if we manage to keep global warming below 2°.
We simulate the future snow cover in the Alps with the help of a snow model, which is fed by...
Citation
Share