Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 11, issue 2
The Cryosphere, 11, 827–840, 2017
https://doi.org/10.5194/tc-11-827-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 11, 827–840, 2017
https://doi.org/10.5194/tc-11-827-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Mar 2017

Research article | 28 Mar 2017

Terrain changes from images acquired on opportunistic flights by SfM photogrammetry

Luc Girod et al.
Related authors  
Sensitivity of glacier volume change estimation to DEM void interpolation
Robert McNabb, Christopher Nuth, Andreas Kääb, and Luc Girod
The Cryosphere, 13, 895–910, https://doi.org/10.5194/tc-13-895-2019,https://doi.org/10.5194/tc-13-895-2019, 2019
Short summary
Precise DEM extraction from Svalbard using 1936 high oblique imagery
Luc Girod, Niels Ivar Nielsen, Frédérique Couderette, Christopher Nuth, and Andreas Kääb
Geosci. Instrum. Method. Data Syst., 7, 277–288, https://doi.org/10.5194/gi-7-277-2018,https://doi.org/10.5194/gi-7-277-2018, 2018
Short summary
GLACIER VOLUME CHANGE ESTIMATION USING TIME SERIES OF IMPROVED ASTER DEMS
Luc Girod, Christopher Nuth, and Andreas Kääb
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 489–494, https://doi.org/10.5194/isprs-archives-XLI-B8-489-2016,https://doi.org/10.5194/isprs-archives-XLI-B8-489-2016, 2016
Related subject area  
Remote Sensing
Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations
Stefan Kern, Thomas Lavergne, Dirk Notz, Leif Toudal Pedersen, Rasmus Tage Tonboe, Roberto Saldo, and Atle MacDonald Sørensen
The Cryosphere, 13, 3261–3307, https://doi.org/10.5194/tc-13-3261-2019,https://doi.org/10.5194/tc-13-3261-2019, 2019
Short summary
Effect of snow microstructure variability on Ku-band radar snow water equivalent retrievals
Nick Rutter, Melody J. Sandells, Chris Derksen, Joshua King, Peter Toose, Leanne Wake, Tom Watts, Richard Essery, Alexandre Roy, Alain Royer, Philip Marsh, Chris Larsen, and Matthew Sturm
The Cryosphere, 13, 3045–3059, https://doi.org/10.5194/tc-13-3045-2019,https://doi.org/10.5194/tc-13-3045-2019, 2019
Short summary
Recent glacier and lake changes in High Mountain Asia and their relation to precipitation changes
Désirée Treichler, Andreas Kääb, Nadine Salzmann, and Chong-Yu Xu
The Cryosphere, 13, 2977–3005, https://doi.org/10.5194/tc-13-2977-2019,https://doi.org/10.5194/tc-13-2977-2019, 2019
Short summary
Multisensor validation of tidewater glacier flow fields derived from synthetic aperture radar (SAR) intensity tracking
Christoph Rohner, David Small, Jan Beutel, Daniel Henke, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 13, 2953–2975, https://doi.org/10.5194/tc-13-2953-2019,https://doi.org/10.5194/tc-13-2953-2019, 2019
Short summary
Estimating the sea ice floe size distribution using satellite altimetry: theory, climatology, and model comparison
Christopher Horvat, Lettie A. Roach, Rachel Tilling, Cecilia M. Bitz, Baylor Fox-Kemper, Colin Guider, Kaitlin Hill, Andy Ridout, and Andrew Shepherd
The Cryosphere, 13, 2869–2885, https://doi.org/10.5194/tc-13-2869-2019,https://doi.org/10.5194/tc-13-2869-2019, 2019
Short summary
Cited articles  
Andreassen, L. M., Elvehøy, H., Kjøllmoen, B., and Engeset, R. V.: Reanalysis of long-term series of glaciological and geodetic mass balance for 10 Norwegian glaciers, The Cryosphere, 10, 535–552, https://doi.org/10.5194/tc-10-535-2016, 2016.
Björnsson, H., Gjessing, Y., Hamran, S.-E., Hagen, J. O., LiestøL, O., PáLsson, F., and Erlingsson, B.: The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding, J. Glaciol., 42, 23–32, 1996.
Divine, D. V., Pedersen, C. A., Karlsen, T. I., Aas, H. F., Granskog, M. A., Hudson, S. R., and Gerland, S.: Photogrammetric retrieval and analysis of small scale sea ice topography during summer melt, Cold Reg. Sci. Technol., 129, 77–84, https://doi.org/10.1016/j.coldregions.2016.06.006, 2016.
Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., and Abellán, A.: Image-based surface reconstruction in geomorphometry – merits, limits and developments, Earth Surf. Dynam., 4, 359–389, https://doi.org/10.5194/esurf-4-359-2016, 2016.
Etzelmüller, B.: Quantification of thermo-erosion in pro-glacial areas-examples from Svalbard, Z. Geomorphol., 44, 343–361, 2000.
Publications Copernicus
Download
Short summary
While gathering data on a changing environment is often a costly and complicated endeavour, it is also the backbone of all research. What if one could measure elevation change by just strapping a camera and a hiking GPS under an helicopter or a small airplane used for transportation and gather data on the ground bellow the flight path? In this article, we present a way to do exactly that and show an example survey where it helped compute the volume of ice lost by a glacier in Svalbard.
While gathering data on a changing environment is often a costly and complicated endeavour, it...
Citation