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V Holešovičkách 41, 182 09 Prague 8, Czech Republic
13Himalayan Research Center, Lainchaur, Kathmandu, Nepal

Correspondence: Stephan Harrison (stephan.harrison@exeter.ac.uk)

Received: 12 September 2017 – Discussion started: 24 October 2017
Revised: 14 February 2018 – Accepted: 21 February 2018 – Published: 9 April 2018

Abstract. Despite recent research identifying a clear anthro-
pogenic impact on glacier recession, the effect of recent cli-
mate change on glacier-related hazards is at present unclear.
Here we present the first global spatio-temporal assessment
of glacial lake outburst floods (GLOFs) focusing explicitly
on lake drainage following moraine dam failure. These floods
occur as mountain glaciers recede and downwaste. GLOFs
can have an enormous impact on downstream communities
and infrastructure. Our assessment of GLOFs associated with
the rapid drainage of moraine-dammed lakes provides in-
sights into the historical trends of GLOFs and their distri-
butions under current and future global climate change. We
observe a clear global increase in GLOF frequency and their
regularity around 1930, which likely represents a lagged re-
sponse to post-Little Ice Age warming. Notably, we also

show that GLOF frequency and regularity – rather unexpect-
edly – have declined in recent decades even during a time
of rapid glacier recession. Although previous studies have
suggested that GLOFs will increase in response to climate
warming and glacier recession, our global results demon-
strate that this has not yet clearly happened. From an assess-
ment of the timing of climate forcing, lag times in glacier
recession, lake formation and moraine-dam failure, we pre-
dict increased GLOF frequencies during the next decades and
into the 22nd century.
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1 Introduction

There is increasing scientific and policy interest in detect-
ing climate change impacts and assessing the extent to which
these can be attributable to anthropogenic or natural causes.
As a result, recent research demonstrating an anthropogenic
fingerprint on a significant proportion of recent global glacier
recession is an important step forward (Marzeion et al.,
2014). The focus can now shift to glacier hazards but the
complex nature of glacier–climate interactions (Roe et al.,
2017) and their influence on hazards makes this a challeng-
ing task (Shugar et al., 2017).

Mountain glaciers have continued to recede (Kargel et al.,
2014; Cramer et al., 2014) and thin from their late Holocene
(Little Ice Age, LIA) positions and, in many cases, the rate
of recession and thinning has increased over recent decades
largely as a consequence of global warming (Marzeion et
al., 2014). Thinning, flow stagnation and recession of glacier
tongues have resulted in the formation of moraine-dammed
lakes (Richardson and Reynolds, 2000). These moraines,
some of which contain a melting ice core, are built from rock
debris transported by glaciers. When they fail, large volumes
of stored water can be released, producing glacial lake out-
burst floods (GLOFs). These floods have caused thousands
of fatalities and severe impacts on downstream communities,
infrastructure and long-term economic development (Mool
et al., 2011; Riaz et al., 2014; Carrivick and Tweed, 2016).

Although much research has been carried out on the na-
ture and characteristics of GLOFs and hazardous lakes from
many of the world’s mountain regions (e.g. Lliboutry et al.,
1977; Evans, 1987; O’Connor et al., 2001; Huggel et al.,
2002; Bajracharya and Mool, 2009; Ives et al., 2010; Irib-
arren et al., 2014; Lamsal et al., 2014; Vilímek et al., 2014;
Westoby et al., 2014; Perov et al., 2017), there are signifi-
cant gaps in our knowledge of these phenomena at the global
scale and concerning their relationship to anthropogenic cli-
mate change. Detecting changes in the magnitude, timing and
frequency of glacier-related hazards over time and assess-
ing whether changes can be related to climate forcing and
glacier dynamical responses is also of considerable scientific
and economic interest (Oerlemans, 2005; Stone et al., 2013).
Multiple case studies are insufficient to achieve a better un-
derstanding of the mechanisms leading to GLOF initiation
so a more comprehensive understanding of the global fre-
quency and timing of GLOFs is necessary. Testing such re-
lationships at a global scale is also an important step toward
assessment of the sensitivity of geomorphological systems to
climate change.

Despite numerous inventories of GLOFs at regional scales
(see Emmer et al., 2016), no global database has been cre-
ated which focuses specifically on GLOFs relating to the
failure of moraine dams. A global database is required to
place GLOFs in their wider climatic context (Richardson
and Reynolds, 2000; Mool et al., 2011). This means that we
are unable to answer some important questions concerning

their historic behaviour and therefore the changing magni-
tude and frequency of GLOFs globally through time, and
their likely evolution under future global climate change.
This latter point is made even more difficult by the lack of
long-term climate data from many mountain regions. Given
the size and impacts of GLOFs in many mountain regions,
better understanding their links to present and future climate
change is of great interest to national and regional govern-
ments, infrastructure developers and other stakeholders. We
argue that glacier hazard research needs to be increasingly
seen through the lens of change adaptation.

These issues and knowledge gaps can be addressed via a
systematic, uniform database of GLOFs. Here we have com-
piled an unprecedented global GLOF inventory related to
the failure of moraine dams. We discuss the problems in-
volved in developing a robust attribution argument concern-
ing GLOFs and climate change. This inventory covers only
the subset of GLOFs that are linked to overtopping or fail-
ure of moraine dams. Our focus on moraine dams is moti-
vated by (1) this type of event leaving clear diagnostic evi-
dence of moraine-dam failures in the form of breached end
moraines and lake basins, whereas ice-dammed lake failures
commonly do not leave such clear and lasting geomorpho-
logical evidence and (2) the conventional hypothetical link
between climate change, glacier response, moraine-dammed
lake formation and GLOF production being more straight-
forward compared to the range of processes driving GLOFs
from ice- and bedrock-dammed lakes.

Such GLOF events are often triggered by ice and rock-
falls, rockslides or moraine failures into lakes, creating se-
iche or displacement waves, but also by heavy precipita-
tion or ice melt/snowmelt events (Richardson and Reynolds,
2000). While climate change plays a dominant role in the re-
cession of glaciers, downwasting glacier surfaces debuttress
valley rock walls, leading to catastrophic failure in the form
of rock avalanches or other types of landslides (Ballantyne,
2002; Shugar and Clague, 2011; Vilímek et al., 2014). Other
climatically induced triggers of moraine dam failures include
increased permafrost and glacier temperatures leading to fail-
ure of ice and rock masses into lakes and the melting of ice
cores in moraine dams, which leads to moraine failure and
lake drainage.

Attribution of climate change impacts is an emerging re-
search field and no attribution studies on GLOFs are avail-
able so far. Even for glaciers only very few attribution stud-
ies have been published to date (Marzeion et al., 2014; Roe
et al., 2017). Follow-up studies from the IPCC 5th Assess-
ment Report (Cramer et al., 2014) proposed a methodolog-
ical procedure to attribute impacts to climate change (Stone
et al., 2013). Based on that, a methodologically sound de-
tection and attribution study needs first to formulate a hy-
pothesis of potential impacts of climate change. In our case
physical process understanding supports the association be-
tween climate change and GLOFs associated with moraine-
dam failure by climate warming, resulting in glacier reces-
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sion and glacial lake formation and evolution behind moraine
dams which become unstable and fail catastrophically. The
next step requires a climate trend to be detected, followed
by the identification of the baseline behaviour of the system
in the absence of climate change. The difficulty of identify-
ing the baseline behaviour is related to several factors. The
first is the existence of confounding factors, both natural and
human related. For instance, the frequency of GLOFs from
moraine dams also depends on factors such as the stability
of the dam, including dam geometry and material or miti-
gation measures such as artificial lowering of the lake level
(Portocarreo-Rodriguez and the Engility Corporation, 2014).
Second, there are few long-term palaeo-GLOF records with
which to assess baseline behaviour. Eventually, attribution
includes the detection of an observed change that is con-
sistent with the response to the climate trend, in our case a
change in GLOF occurrence and the evaluation of the con-
tribution of climate change to the observed change in rela-
tion to confounding factors. Our chief observational result is
that there is an upsurge in GLOF frequency starting around
1930 and then a decline following roughly 1975 and persist-
ing for decades (see also Carrivick and Tweed, 2014). At face
value, when comparing this with the climate records, there
seems to be no relationship between global GLOF frequency
and concurrent climatic fluctuations, and a regional break-
down offers no solution; for example, strong climatic global
(or Northern Hemisphere) warming during the period of de-
clining GLOF frequency after 1975 appears to be counterin-
tuitive. A simplistic inference would be that climate change
does not influence GLOF incidence, but we reject this given
our understanding of the physical drivers of glacier reces-
sion, lake development and drainage mechanisms. Although
we know that GLOFs involve a complex set of dynamics,
one of the important dynamical changes affecting GLOFs is
the formation and growth of glacial lakes, and we know that
there must be a relationship here to climatic warming. GLOF
triggers also commonly involve extreme weather, such as ex-
treme heat and extreme precipitation, which are intuitively
linked to climate change as well, even if the attribution ex-
periments have not yet been carried out. We thus have to dig
deeper to see how GLOF frequency may be connected to cli-
mate change. The point arises that the conditions needed for
a GLOF involve a long period of lake formation and growth,
such that past climate changes are involved. In the Methods
section we produce a model whereby the history of one cli-
mate variable and its time derivative – Northern Hemisphere
mean temperature and warming rate – are linked to the GLOF
record.

2 Methods

We produced a database of GLOFs developed from a col-
lation of regional inventories and reviews (e.g. GAPHAZ1,
WGMS2and GLACIORISK3 databases and the GLOF
Database provided under ICL database of glacier and per-
mafrost disasters from the University of Oslo, Reynolds and
Richardson, 2000; RGSL, 1997, 2002), regional overviews
and reviews (e.g. Clague et al., 1985; Xu, 1987; Costa and
Schuster, 1988; Reynolds, 1992; Ding and Liu, 1992; Clague
and Evans, 2000; O’Connor et al., 2001; Zapata, 2002; Ray-
mond et al., 2003; Jiang et al., 2004; Carey, 2005; Osti and
Egashira, 2009; Narama et al., 2010; Ives et al., 2010; Wang
et al., 2011; Carey et al., 2012; Mergili and Schneider, 2011;
Fujita et al., 2012; Iribarren et al., 2014, Emmer, 2017) and
case studies of individual GLOFs (e.g. Kershaw et al., 2005;
Harrison et al., 2006; Worni et al., 2012). A complete list
is available in the Supplement. The GLOF database was de-
veloped from a collation of regional inventories and reviews
(see Supplement). Only GLOFs that could be dated to the
year and to moraine failure were included. Past tempera-
ture trends from the glacier regions of interest were extracted
from three independent global temperature reconstructions
(CRUTEM4.2, Jones et al., 2012, NOAA NCDC (National
Oceanic and Atmospheric Administration – National Cli-
matic Data Center), Smith et al., 2008, and NASA GISTEMP
(Goddard’s Institute Surface Temperature Analysis), Hansen
et al., 2010). These data sets provided temperature anomaly
data relative to a modern baseline beginning in 1850 for
CRUTEM4.2 and 1880 for NOAA NCDC and NASA GIS-
TEMP.

2.1 Test of direct linkage between GLOF rate and
climate change

We concentrate exclusively on the subset of GLOFs asso-
ciated with the failure of moraine-dammed lakes as these
are a major hazard in many mountain regions but also rep-
resent the best candidates of outburst floods for attribution to
climate change. We differentiate these from other glacially
sourced outburst floods, such as those resulting from the fail-
ure of an ice dam (Walder and Costa, 1996; Tweed and Rus-
sell, 1999; Roberts et al., 2003), dam overflow, volcanically
triggered jökulhlaups (Carrivick et al., 2004; Russell et al.,
2010; Dunning et al., 2013) or the sudden release of water
from englacial or subglacial reservoirs (Korup and Tweed,
2007).

The period over which climate data are available is de-
pendent on the region but starts in 1850 in CRUTEM4.2 and
1880 in NOAA NCDC and NASA GISTEMP. The resolu-
tion of the data is generally 5◦; however, NASA GISTEMP
is provided at 1◦ resolution but it should be noted this does

1http://www.gaphaz.org/
2http://www.wgms.ch/
3https://cordis.europa.eu/project/rcn/54168_en.html
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not imply there are more observational data in this analy-
sis. For each region, we extract all grid points that contain a
glacier as defined in the World Glacier Inventory – Extended
Format (WGI-XF). With the exception of the European Alps
no data set contains a complete continuous record for the pe-
riod 1900–2012. We therefore take all available data points
to form time series for each data set and derive a mean lin-
ear trend for the 1990–2012 period. Given large uncertainties
and data gaps no attempt is made to statistically test these
trends. The trends presented here are therefore considered il-
lustrative of past changes in temperature for these regions.

Wavelet analysis of GLOF incidence

Wavelets are a commonly used tool for analysing non-
stationary time series because they allow the signal to be de-
composed into both time and frequency (e.g. Lane, 2007).
Here, we follow the methodology of Shugar et al. (2010), al-
though we use the Daubechies (db1) continuous wavelet. The
wavelet power shown here has been tested for significance at
95 % confidence limits, and a cone of influence is applied to
reduce edge effects. We follow Lane (2007) in choosing an
appropriate number of scales (S = 28, see his Eq. 28), which
are related to the shape of the cone of influence.

2.2 The Earth’s recent climate record smoothed along
glacier response timescales: development of the
GLOF lag hypothesis

A potentially destructive GLOF may elapse after a glacial
lake grows to a volume where a sudden release of glacial
lake water can exceed a normal year’s peak instantaneous
discharge. There are timescales associated with the period
between a climatic (or other) perturbation and the occurrence
of a GLOF. The following thought experiment demonstrates
the concept of the lagging responses of GLOF activity to cli-
mate change: an initialized stable condition allows glacier–
climate equilibrium, where neither the climate nor the glacier
has fluctuated much for some lengthy period and where no
other strongly perturbing conditions exist; e.g. there are no
significant supraglacial or ice-marginal or moraine-dammed
lakes, and a steady state exists in the supply and removal of
surface debris. We then impose a perturbation (climatic or
other) which favours eventual lake development and growth
and eventually a GLOF. We describe two successive time pe-
riods which must pass before a significant GLOF can occur,
and then a third period before a GLOF actually occurs: lake-
inception time (τi), lake growth time (τg) and trigger time
(τt). The first two sum to the GLOF response time (τGLOF)

as we define it: τGLOF = τi+ τg. The terms are for illustra-
tive purposes: many supraglacial ponds initially go through
a lengthy period where they fluctuate and drain annually and
thus do not have a chance to grow beyond one season. Fur-
thermore, lakes can grow to a point where limnological pro-
cesses take over from climate; hence lake growth becomes

detached from climate change. Even so, our set of definitions
can be used to explain the lagging responses of glacier lakes
and GLOFs to climatic history.

A GLOF does not necessarily occur upon climate step
change date +τGLOF, which is the timescale over which the
metastable system establishes a condition where a significant
GLOF could occur. A trigger is needed (e.g. a large ice or
rock avalanche into the lake or a moraine collapse as an ice
core melts). After a sizeable glacial lake has developed, suit-
able GLOF triggers may occur with a typical random inter-
val averaging τt, which depends on the topographic setting of
the glacier lake, valley-side geology, steepness, moraine dam
properties and climate. As a result, τt could range from years
to centuries. Furthermore, as a lake usually continues to grow
after τGLOF has elapsed, τt can in principle change, probably
shortening as the lake lengthens and as the damming moraine
degrades. The time elapsing between a climatic perturbation
and a GLOF then is the sum of three characteristic sequential
periods, τi+ τg+ τt.

The lake inception time τi might be approximated by the
glacier response time, which has been defined parametrically
(Jóhannesson et al., 1989; Bahr et al., 1998) but in general
describes a period of adjustment toward a new equilibrium
following a perturbation. We take a simple parameterization
(Jóhannesson et al., 1989) and equate τl = h/b, where h is
the glacier thickness of the tongue near the terminus and b is
the annual balance rate magnitude. The glacier response time
approximating the lake inception time may be many decades
for most temperate valley glaciers, but it can range between
a few years and a few centuries. The glacier response time is
a climate-change-forgetting timescale. After a few response
times have elapsed, a glacier’s state and dynamics no longer
remember the climate change that induced the response to a
new equilibrium. For illustration, we adopt τl = 60 years, a
value typical of many temperate valley glaciers.

A supraglacial pond may drain and redevelop annually
(posing no significant GLOF risk), but at some point, if there
is a sustained long-term negative mass balance, supraglacial
ponds commonly grow, coalesce and form a water body big
enough that rapid partial drainage can result in a significant
GLOF. That lake growth period is defined here as τg, for
which we adopt 20 years, a value typical of many temper-
ate glacier lakes of the 20th century (e.g. Wilson et al., 2018;
Emmer et al., 2015) Hence, τGLOF = τi+ τg ≈ 80 years for
the favoured values. Hence, a significant GLOF may occur
at any time from 80 years following a large climatic pertur-
bation: what the GLOF waits on is τt, which could be years
or a century. This concept can be extended to the lagging
response of a whole population of glaciers following a per-
turbation in regional climate (Fig. 1).

We distinguish between climate change, which may estab-
lish conditions needed for a GLOF to happen, and weather,
which sometimes may be involved in a GLOF trigger. GLOF
triggers are diverse; e.g. protracted warm summer weather
may trigger an ice avalanche into the lake or moraine melt-
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Figure 1. Reconciliation of GLOF and climate records. (a) Blue curve: composite record of Northern Hemisphere land surface temperature
(merged from multi-proxy data and instrumental records, as described in the main text), plus a model of land surface temperature during the
period 2015–2100. Red, grey and black curves: moving historical averages of the blue curve, as described in the text, using τGLOF = 20, 40
and 80 years. (b, c) Close-up of the more recent periods covered in (a). (d) Warming rate extracted from the moving historical averages using
τGLOF = 20, 40 and 80 years. Periods of cooling and warming are shown with blue and red tints, respectively, using the τGLOF = 80 years
curve. (e) Close-up of (d) to a more recent period. (f) Comparison of a smoothed GLOF frequency curve (red line, GLOFs/year historical
moving average) with the moving historical average Northern Hemisphere temperature (black curve) using τGLOF = 80 years and shifted
+45 years, where the 45-year shift is considered to be reflective of τ , the GLOF trigger timescale. See supplement text for more description
and explanation.

through, or heavy winter snow may trigger an ice avalanche
into the lake.

However, the relevant controlling climate in this exam-
ple is that of the prior climatic history and the conditioning
period defined by τGLOF and the typical trigger interval τt.
Hence, τGLOF is closely connected to climate, whereas τt can
be connected to weather for certain types of triggers.

The assessment above is for a single step-function climate
change. Considering that climate changes continuously and
glacier characteristics vary, populations of glaciers must have
full distributions of τi, τg and τGLOF. Even while glaciers
are still adjusting to any big recent historical climate change,
more climate change accrues; glacier and lake dynamics take
all that into account, either increasing the likelihood and per-
haps size of a GLOF or decreasing or delaying it. Hence, the

overall GLOF frequency record cannot be synchronous with
climatic fluctuations, and it also should not simply trace past
climate change with a time lag; rather, the GLOF frequency
record for any large population of glaciers should be defi-
nitely but complexly related to the recent climatic history.

The functional dependence on climate history is not
known for any glacier or population of glaciers, but to ex-
plore the concept of a lagged GLOF response to accrued
climate changes, we assert that the integration function will
tend to weight recent climatic shifts more strongly than pro-
gressively older climatic shifts, the memory of which is grad-
ually lost as the glacier population adjusts. That is, because
of glacier dynamics and the responses of a population of
glaciers to climatic changes, the population eventually loses
memory of sufficiently older climatic changes and adjusts

www.the-cryosphere.net/12/1195/2018/ The Cryosphere, 12, 1195–1209, 2018
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asymptotically toward a new equilibrium. This should be
true for any climate-sensitive glacier dynamics (Oerlemans,
2005). Though we do not know the functional form of the
glacier responses (either for an individual glacier or a pop-
ulation), we nonetheless wish to illustrate our point while
not driving fully quantitative conclusions. We propose that
the integration of climate information into ongoing glacier
dynamical adjustments occurs with exponentially declining
weighting going backward in time from any given year.
The exponential time-weighting constant may be similar to
τGLOF. We have computed a moving time-average Northern
Hemisphere temperature with the weighting of the average
specified by an assumed τGLOF = 80 years; the computed
moving average pulls data, for any year, over the preceding
period of τGLOF; i.e. it includes temperature information up
to 240 years prior to any given year. The weighting of earlier
years’ temperatures within that τGLOF is less than that of later
years, according to the exponential. The cut-off at τGLOF is
arbitrary and was done for computational expediency, seeing
that any climate fluctuation occurring before τGLOF years ear-
lier is inconsequential due to the exponential memory loss.

We combined the Mann et al. (2008) multi-proxy Northern
Hemisphere temperature anomaly from 501 AD to 1849, the
Jones et al. (2012)4 Northern Hemisphere land instrumental
temperature record from 1850 to 2014 and a model of ex-
pected warming from 2015 to 2100. It is the recent climate
history at each glacier lake or region that is strictly relevant,
but lacking such records and needing here to only establish
the concept, we settle for the treatment described above in-
volving the Northern Hemisphere temperature anomaly.

The model is a constant 2.7 ◦C century−1 warming; noise
was added from a naturally noisy but overall non-trending
instrumental record from 1850 to 1899, with some years re-
peated to append the 2015–2100 period (Fig. 1). The Mann
et al. (2008) and Jones et al. (2012) data sets were brought
into congruence in 1850. Then we smoothed the compos-
ite record and model results using the τGLOF exponentially
weighted filter, as described above, where the natural log-
arithmic “forgetting” timescale τGLOF = 20, 40 or 80 years
for three illustrative cases. Smoothing was computed for
τGLOF, i.e. 240 years if τGLOF = 80 years. Our favoured value
τGLOF = 80 years is based on large Himalayan and other tem-
perate glacier lakes. The shorter response times would likely
apply to small glaciers or those occurring in steep valleys.

Regardless of the functional form of the glacier response
and lake dynamics, GLOF frequency in any given region
or worldwide must lag the climate record. The historically
filtered/smoothed temperature record and model incorporat-
ing τGLOF = 20, 40 and 80 years is shown in Fig. 1a–c to-
gether with the unsmoothed actual record and model temper-
ature series. The temperature anomalies are plotted in pan-
els (a), (b) and (c); and the warming rate in panels (d) and (e).

4https://crudata.uea.ac.uk/cru/data/temperature/\T1\
textbackslash#datdow

The historically averaged/smoothed temperature record lags
fluctuations in the unsmoothed record. The lag is most eas-
ily seen where temperatures start to rise rapidly in the 20th
and 21st centuries. The high-frequency temperature anomaly
fluctuations also show concordantly but in damped form in
the smoothed moving average curves because the curves are
historical moving averages with the heaviest weighting to-
ward the more recent years. The lagging responses are also
seen at several times when the running average curves vari-
ously show warming and cooling for the same year depend-
ing on the value of τGLOF .

We posit that the historically filtered warming rate (more
than the temperature anomaly) drives GLOF frequency. In
Fig. 1 we show GLOF frequency (smoothed over 10-year
moving averages) together with the warming rate extracted
from the historically filtered temperature and model temper-
ature time series. To get a better match with the tempera-
ture treated as such, we applied a further 45-year shift. From
a glacier and lake dynamics perspective, this shift might
relate to the trigger timescale, τt. Singular values ofτGLOF
andτt should not pertain globally to all glaciers but should
span wide ranges. The adopted values τGLOF = 80 years and
τt = 45 years nonetheless make for a plausible match be-
tween the GLOF and climate records. These numbers make
sense in terms of glacier and lake dynamics timescales, but
we reiterate that our purpose with this climate–GLOF fit-
ting exercise is illustrative. In sum, a notable shift in GLOF
frequency does not connote a concordant shift in climate,
though prior climate change may still underlie the cause.

3 Results

Our global analysis identifies 165 moraine-dam GLOFs,
recorded since the beginning of the 19th century (Fig. 2a).
The vast majority of these GLOFs (n= 160; 97 %) occurred
since the beginning of the 20th century, at a time of climate
warming and increasing glacier recession (Figs. 2 and 5).
None of these GLOFs were associated with repeat events
from the same lake. Around 65 % of GLOFs occurred be-
tween 1930 and 1990. Thirty-six GLOFs occurred in the
mountains of western North America between 1929 and
2002 (Table S1 in the Supplement). Fifteen of these occurred
in western Canada, 15 in the Cascade Range of the USA
and four in Alaska. One occurred in Mexico and 1 in the
Sierra Nevada. In the South American Andes we identified
40 GLOFs. Eleven occurred in Chile between 1913 and 2009
(including the large one in Patagonia at Laguna del Cerro
Largo in 1989); one in Colombia in 1995 and 28 in Peru
between 1702 and 1998. Fourteen GLOFs are listed from
the European Alps. Three are from Austria between 1890
and 1940, five from Switzerland between 1958 and 1993 one
from France in 1944 and five from Italy between 1870 and
1993. In the Pamir and Tien Shan mountains in central Asia,
we identified 20 GLOFs, with most of these dating from the
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Figure 2. (a–f) Left: temporal distribution of regional GLOF frequency and magnitude. At all locations, the cumulative sum of events (black
line) indicates an upsurge in the number of events per year. The timing of this upsurge differs by location and likely reflects an increase in
reporting, especially in the early part of the record, rather than a change in GLOFs, at least until the 1970s–1990s after which the GLOF
rate reduces. Right: global time series climate data from the five regions using CRUTEM 4.2, NOAA NCDC and NASA GISTEMP. Grey
columns represent the baseline against which temperature is measured.
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Figure 3. (a) Record of all precisely dated GLOFs from 1860 to 2011. (b) Wavelet power spectrum of global GLOF record, significant at
5 %. (c) Frequency-integrated wavelet power spectrum.

late 1960s to the early 1980s. The largest number of GLOFs
(55) is reported from the Hindu Kush Himalaya (HKH) in-
cluding the mountains of Bhutan and Tibet, dated from the
20th and 21st century. Thirty are from Tibet (between 1902
and 2009), 12 from Nepal between 1964 and 2011(and one
is reported to have occurred in 1543) and five in Pakistan be-
tween 1878 and 1974. There is uncertainty in reporting some
of these GLOFs and we discuss this further in the Supple-
ment.

From around 1930 to about 1950, GLOFs occurred
with regularity but a low frequency (Fig. 3). In other
words, floods occurred with relatively long period variabil-

ity (50–60 years). Starting around 1960, the frequency of
these events increased (period decreased to approximately
20 years), remaining relatively high until about 1975, after
which the statistically significant periodicities end, though
GLOFs continue to occur.

While incomplete data restrict a full analysis of GLOF
triggers, precise date, magnitude and initiation at a global
scale, many GLOFS triggered by ice avalanches and rock-
falls occur during summer (see Fig. 4). The characteristics of
GLOFs that could be influenced by climate change include
changes in magnitude, frequency, timing (either changes in
seasonality or changes over longer timescales) and trigger
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Figure 4. Seasonal variation in the occurrence of GLOF associated
with the failure of moraine dams. Only a proportion of the GLOFs
have seasonal data on timings.

mechanisms. In addition, many rock avalanches into lakes
triggering a GLOF may represent a paraglacial response to
deglaciation from the LIA or earlier times (Knight and Har-
rison, 2013; Schaub et al., 2013) and this delayed response
demonstrates the need to account for lags between changes
in forcing and responses in attribution studies.

4 Discussion

From this analysis, we highlight three key observations:
(1) GLOFs became more common around 1930 but then their
incidence was maintained at a quasi-steady level for a few
decades thereafter; (2) since about 1975, GLOF periodicity
has decreased globally; and (3) the periodicities of GLOF
occurrence have changed throughout the 20th century. These
observations are discussed below.

Our first main observation is that GLOF frequency in-
creased dramatically and significantly around 1930 globally
and between 1930 and 1960 regionally (Figs. 1 and 2). We
find no obvious reason for an abrupt improvement of GLOF
reporting in 1930. While acknowledging that incompleteness
of the record must be a pervasive factor throughout the early
period covered by the database, we discount reporting varia-
tions as the cause of the abrupt shift. For instance, this pattern
is observed in the European Alps, a region with a long history
of mountaineering, glacier research and valley-floor habita-
tion and infrastructure development. Given that we record
individual GLOFs in the 19th and early 20th centuries we
argue that the increase in GLOF frequency in the 1930s rep-
resents a real increase rather than an observational artefact.
Following the increase around 1930, we observe a similar
rate of GLOFs for the subsequent years, typically 1 per year
in the following decade, increasing to 2–3 per year during
the 1940s (e.g. Figs. 1a, 2a). Again, there is no evidence
that incompleteness of data is a main cause of the observed
pattern. We therefore conclude that the incidence of global
GLOFs has remained generally constant between about 1940
and about 1960. In the 1960s and early 1970s, several years

Figure 5. Temperature anomalies in the CRUTEM4.2 data set for
each mountain region. For each region we extract all the grid points
that contain a glacier as defined in the World Glacier Inventory –
Extended Format (WGI-XF) and these are shown as black crosses.
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saw more than five GLOFs. We argue below that the trend
between 1940 and 1960 hides a more complex spatial and
temporal pattern (Clague and Evans, 2000; Schneider et al.,
2014).

Our second main observation is that, while there is con-
siderable variability between regions, GLOF incidence rates
have decreased since about 1975 globally (Fig. 2). There are
both more and larger GLOFs during the 1970s and early
1980s in the Pamir and Tien Shan, in the 1960s in the HKH
and in the 1990s in Alaska, the Coast Mountains and Cana-
dian Rockies; and then decreases in both magnitude and fre-
quency follow these periods. In the Andes however, GLOF
incidence decreased after the early 1950s. The latter ob-
servation may be at least partly attributable to considerable
GLOF mitigation measures in Peru, such as engineering-
based lake drainage or dam stabilization (Carey et al., 2012;
Portocarreo-Rodriguez, 2014). Carrivick and Tweed (2014)
propose several reasons why “glacial floods” may have de-
creased in frequency in recent decades. These include suc-
cessful efforts to stabilize moraine dams and changes in the
ability of fluvial systems to transmit floods over time. We ar-
gue, conversely, that this reduction may represent a “lagged”
response to glacier perturbations following climate change.
More research is clearly needed on this question, and we
believe that our analysis, along with that of Carrivick and
Tweed’s, will stimulate further work and discussion.

Our third main observation is that for several decades in
the 20th century, GLOF occurrence has been periodic, but
that periodicity has varied. Since about 1975, and especially
since 1990, the periodic nature of GLOF occurrence has
diminished, even though GLOFs have continued. In other
words, GLOFs since 1975 have become more irregular. We
suspect that the switch to less periodic outburst floods in
recent decades is related to an underlying mechanism such
as topographic constraints and glacier hypsometries, with
glaciers retreating into steeper slopes, implying a reduced
rate of moraine-dammed lake formation – a phenomenon ob-
served, for example, in the European Alps (Emmer et al.,
2015).

The statistics of small numbers affect these regional, time-
resolved records, but the overall validity of a similar mid-
20th century increase and then decrease in the frequency of
GLOFs can be further detected in the global record and is
statistically significant (Fig. 3). We argue that the reduction
in global GLOF frequency after the 1970s (especially in cen-
tral Asia, HKH and North America) is real, because the con-
temporary reporting is likely to be nearly complete given the
scientific and policy interest in glacier hazards from the late
20th century. Hence, our conclusion is that globally and re-
gionally there have been interdecadal variations in the fre-
quency of GLOFs, and in general the most recent couple of
decades have seen fewer GLOFs than the early 1950s to early
1990s. The record’s (in)completeness is not able to explain a
decreasing incidence rate. This temporal variation in GLOF
frequency and recent decrease is therefore a robust and sur-

prising result and has occurred despite the clear trend of con-
tinued glacier recession and glacier lake development in re-
cent decades.

Our data allow us to test and refine the widespread as-
sumption that GLOFs are a consequence of recent climate
change (Bajracharya and Mool, 2009; Riaz et al., 2014). This
is an important assumption because it implies that GLOF fre-
quency will increase as the global climate continues to warm
with potential major impacts for downstream regions.

The global increase in GLOF frequency after 1930 must be
a response to a global forcing, considering global glacier re-
treat (Zemp et al., 2015), and physical process understanding
suggests that this is a lagged response to the warming mark-
ing the end of the LIA (Clague and Evans, 2000). Although
the global response appears sudden, in 1930 the region-by-
region assessment shows that the response was asynchronous
regionally and temporally over three decades (Fig. 2). This is
consistent with the fact that the end of the LIA was not glob-
ally synchronous (Mann et al., 2009) and we also argue that
this reflects regional variations in glacier response times.

We argue that as a climate shift occurs, after some period
related to the glacier response time, previously stable or ad-
vancing glaciers start to thin and recede; after a further lim-
nological response time proglacial ponds start to grow, co-
alesce and deepen into substantial moraine-dammed lakes.
GLOFs typically occur after some additional period of time
(the GLOF response timescale), but this time can be brief
in glaciers with short response times, such as in the tropical
Andes (Fig. 1).

In the HKH and central Asia the near-concordant forma-
tion of many Himalayan glacier lakes and the abrupt increase
in GLOF rates in the 1950s and 1960s suggest that the GLOF
response time is much smaller than the limnological response
time. The moraine evidence here indicates that a shift from
mainly glacier advance to recession and/or thinning occurred
widely, though regionally asynchronously, between 1860 and
1910. The HKH underwent this shift by around 1860 (Owen,
2009; Solomina et al., 2015) in response to warming follow-
ing the regional LIA. The limnological response time in the
Himalayan–Karakoram region is thus around 100 years, i.e.
substantially longer than in the tropical Andes.

We have arrived at a plausible explanation for the post-
1930 (1930–1960) increases in GLOF rates. They are most
likely heterogeneous, lagging responses to the termination
of the LIA, with limnological response times of the order
of decades to 100 years, depending on the region (e.g. Em-
mer et al., 2015). The limnological response times may be
of a similar order to the glacier dynamical response times
(Jóhannesson et al., 1989; Raper and Braithwaite, 2009) but
are appended to them. Thus, measured from a climatic shift
to increased GLOFs, the combined glaciological and limno-
logical response times (plus GLOF response times, which
may be the shortest of the three response times) may sum
to roughly 45–200 years (Fig. 1). It cannot be much more
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than this, because then we would not see the multi-decadal
oscillations in GLOF rates in some regions or globally.

Some individual glaciers may have faster response times
than estimated above (Roe et al., 2017), but taken on a
broader statistical basis we infer that the most recent GLOFs
are a delayed response to the end of the LIA. A fundamental
implication is that anthropogenic climatic warming to date
will likely manifest in increasing GLOFs in some regions of
the world starting early this century and continuing into the
22nd century. In all the mountain regions considered here the
available evidence indicates a warming trend over the last
century around 0.1 ◦C decade−1 (Figs. 2 and 5). The trend
varies between data set and region, with the highest rates
in the Pamir Tien Shan region and the lowest in the HKH.
The most uncertain region is the Andes, where the sparse-
ness of data prevents any meaningful assessment. The trends
are consistent with the global mean land temperature trend
0.95± 0.02 to 0.11± 0.02 ◦C for 1901–2012, implying these
regions have warmed at approximately the same rate as the
global land surface.

The baseline behaviour of glacial lake systems in the ab-
sence of climate change is not known in detail, but the low
rate of GLOFs prior to 1930 may indicate that without warm-
ing the frequency would be low. The difficulty of attribut-
ing individual GLOF behaviour to climate change relates
to the presence of non-climatic factors affecting GLOF be-
haviour, such as moraine dam geometry and sedimentology,
climate-independent GLOF triggers (e.g. earthquakes) and
the timescales related to destabilization of mountain slopes,
producing mass movements into lakes (Haeberli et al., 2017).
This represents the period of paraglaciation (e.g. Ballantyne,
2002; Holm et al., 2004; Knight and Harrison, 2013). These
system characteristics may vary regionally and temporally
within the evolutionary stage of a receding mountain glacier,
and non-climatic factors such as lake mitigation measures ad-
ditionally influence GLOF frequency and magnitude (Clague
and Evans, 2000; Portocarreo-Rodriguez, 2014). We argue
that while the original driver of lake development is likely to
involve climate change (resulting in glacier downwasting and
slowed meltwater flux through glaciers systems as glacier
surfaces reduce in gradient) other mechanical and thermody-
namic processes likely assume more importance as the lakes
evolve, and these includes small-scale calving and insolation-
induced melting of ice cliffs (e.g. Watson et al., 2017).

We also recognize that contemporary mountain glaciers
are dissimilar to those that existed in the LIA. They are, in
the main, shorter, thinner and with prominent moraines. As-
sumptions that climate processes acted on similar glacial sys-
tems over time are therefore likely to be simplistic.

Based on the analysis of our global GLOF database we
have shown that a clear trend is detectable globally and re-
gionally diversified in the 20th century with a sharp increase
in GLOF occurrence around 1930. This trend is attributable
to the observed climate trend, namely the warming since the
end of the LIA. The delayed response of GLOF occurrence

is an exemplar for the complexities of how natural systems
respond to climate change, underlining the challenges of at-
tribution of climate change impacts. We have shown here that
attribution of GLOFs to climate change is possible, although
the suite of factors influencing GLOF occurrence cannot be
fully quantified.

In addition, lake outbursts following moraine failures are
likely to be quite different in different regions. This reflects
differences in a number of factors including ground ther-
mal conditions, presence or absence of ground ice and per-
mafrost, influence of extreme weather and seismic processes,
topography and glacial history. To assess these we would
need to better understand the geomorphological timescales
involved in lake evolution and failure to design a more
robust statistical analysis and to understand each region’s
GLOF history. We thus recommend close attention by the
Earth surface processes science community to various pro-
cess timescales using field studies, satellite remote sensing
and theoretical modelling.

Our inventory and the global pattern of GLOFs that is de-
rived from it lacks in many cases precise data on the pro-
cesses responsible for GLOFs. This is a consequence of in-
complete reporting of GLOFs in remote mountain regions,
especially before the advent and wide use of remote sensing.
In many cases the record is of a large flood being observed
and then some time afterwards a collapsed moraine dam is
seen and the flood is attributed to this collapse. Clearly the
precise details of how the collapse occurred is not always
available, and this uncertainty bedevils all similar detection
and attribution studies, especially on those events associated
with rapid geomorphological change. This intrinsic incom-
pleteness in the record is problematic but should not prevent
reasonable assertions on GLOF triggers to be made, espe-
cially if global-scale and consistent patterns in GLOF be-
haviour are observed.

Future research should therefore more systematically
study the factors influencing GLOF frequency and magni-
tude and lake formation where a distinction between GLOF
conditioning and triggering factors will be helpful (e.g.
Gardelle et al., 2011).

If climate (such as temperature time series) influences
GLOFs, as surely must be the case, long lag times are nec-
essarily implied by the empirical data sets. With such lags
as we have modelled, this brings the increase of GLOFs fol-
lowing 1930 into line with temperature increases at the end
of the Little Ice Age. Subsequent changes in the GLOF rate
(including a several-decades-long fall in GLOF rates) can
similarly be attributed to fluctuations in global warming. If
these conclusions are broadly correct, a further implication
is that an acceleration in GLOF rates will probably occur in
the 21st century, perhaps starting rather soon. Even though
the actual global warming rate for the 21st century may be
nearly constant, as modelled, the fitted warming rate as plot-
ted in Fig. 1f accelerates because of the memory of a post-
LIA, pre-anthropogenic quasi-stable climate. We are enter-
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ing a stage where anthropogenic warming will increasingly
dominate GLOF activity and attribution of GLOFs to anthro-
pogenic global warming will be confirmed. For now, this
remains a hypothetical projection or expectation and is not
yet borne out in the GLOF record.

5 Conclusions

We conclude that the global record of GLOF following the
failure of moraine dams shows a dramatic increase in GLOF
occurrences from 1930 to 1970, then a decline. We also ob-
serve that the GLOF frequency has not fluctuated directly
in response to global climate. A reasonable premise is that
climate, glaciers, glacier lakes and GLOFs are closely con-
nected, but the connections between climate and GLOFs are
hidden in response time dynamics. We argue that response
times do not necessarily reflect linear processes and that lake
growth may result in none, single or multiple GLOFs from
the same lake systems. Accordingly, the response times must
vary widely from region to region and glacier to glacier.
From this we infer that the 1930 to 1970 increase in global
GLOF activity is likely a delayed response following warm-
ing that ended the LIA and decreased the rate of moraine-
dammed lake formation. We also infer that the decrease in
GLOF frequency after 1970 is likely related to a delayed
response to the stabilization of climate following the LIA.
In addition, a minor cause (though important locally, for in-
stance in Peru and Switzerland in particular), GLOF mitiga-
tion engineering, may have circumvented a few GLOFs, thus
contributing to the downward trend in recent decades. We can
expect a substantial increase in GLOF incidence throughout
the 21st century as glaciers and lakes respond more dynam-
ically to anthropogenic climate warming. This is corrob-
orated by recent modelling studies projecting the location,
number and dimension of new lakes in areas where glacier
will recede over the coming decades in the Alps, the Hi-
malayas or the Andes (Linsbauer et al., 2016).

As a result, we argue that the sharply increased GLOF
rates starting from 1930 followed by reduced GLOF fre-
quency from high levels in the mid-20th century are both real
and we speculate these trends may reflect the failure of sensi-
tive glacial lake systems in a lagged response to initial glacier
recession from LIA limits. The apparent robustness of con-
temporary lake systems suggests that only the most resilient
moraine-dammed lakes have survived recent climate change.
Predicting their future behaviour is of great importance for
those living and working in mountain communities and those
developing and planning infrastructure in such regions.
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