Articles | Volume 12, issue 5
https://doi.org/10.5194/tc-12-1651-2018
https://doi.org/10.5194/tc-12-1651-2018
Research article
 | 
15 May 2018
Research article |  | 15 May 2018

Where is the 1-million-year-old ice at Dome A?

Liyun Zhao, John C. Moore, Bo Sun, Xueyuan Tang, and Xiaoran Guo

Related authors

Using specularity content to evaluate eight geothermal heat flow maps of Totten Glacier
Yan Huang, Liyun Zhao, Michael Wolovick, Yiliang Ma, and John C. Moore
The Cryosphere, 18, 103–119, https://doi.org/10.5194/tc-18-103-2024,https://doi.org/10.5194/tc-18-103-2024, 2024
Short summary
The Indonesian Throughflow circulation under solar geoengineering
Chencheng Shen, John C. Moore, Heri Kuswanto, and Liyun Zhao
Earth Syst. Dynam., 14, 1317–1332, https://doi.org/10.5194/esd-14-1317-2023,https://doi.org/10.5194/esd-14-1317-2023, 2023
Short summary
Changes in apparent temperature and PM2.5 around the Beijing–Tianjin megalopolis under greenhouse gas and stratospheric aerosol intervention scenarios
Jun Wang, John C. Moore, and Liyun Zhao
Earth Syst. Dynam., 14, 989–1013, https://doi.org/10.5194/esd-14-989-2023,https://doi.org/10.5194/esd-14-989-2023, 2023
Short summary
Regional dynamical and statistical downscaling temperature, humidity and wind speed for the Beijing region under stratospheric aerosol injection geoengineering
Jun Wang, John C. Moore, Liyun Zhao, Chao Yue, and Zhenhua Di
Earth Syst. Dynam., 13, 1625–1640, https://doi.org/10.5194/esd-13-1625-2022,https://doi.org/10.5194/esd-13-1625-2022, 2022
Short summary
Evaluation of six geothermal heat flux maps for the Antarctic Lambert–Amery glacial system
Haoran Kang, Liyun Zhao, Michael Wolovick, and John C. Moore
The Cryosphere, 16, 3619–3633, https://doi.org/10.5194/tc-16-3619-2022,https://doi.org/10.5194/tc-16-3619-2022, 2022
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
Impact of boundary conditions on the modeled thermal regime of the Antarctic ice sheet
In-Woo Park, Emilia Kyung Jin, Mathieu Morlighem, and Kang-Kun Lee
The Cryosphere, 18, 1139–1155, https://doi.org/10.5194/tc-18-1139-2024,https://doi.org/10.5194/tc-18-1139-2024, 2024
Short summary
The staggered retreat of grounded ice in the Ross Sea, Antarctica, since the Last Glacial Maximum (LGM)
Matthew A. Danielson and Philip J. Bart
The Cryosphere, 18, 1125–1138, https://doi.org/10.5194/tc-18-1125-2024,https://doi.org/10.5194/tc-18-1125-2024, 2024
Short summary
The effect of landfast sea ice buttressing on ice dynamic speedup in the Larsen B embayment, Antarctica
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, Benjamin J. Wallis, Benjamin J. Davison, Heather L. Selley, Ross A. W. Slater, Elise K. Lie, Livia Jakob, Andrew Ridout, Noel Gourmelen, Bryony I. D. Freer, Sally F. Wilson, and Andrew Shepherd
The Cryosphere, 18, 977–993, https://doi.org/10.5194/tc-18-977-2024,https://doi.org/10.5194/tc-18-977-2024, 2024
Short summary
Meteoric water and glacial melt in the southeastern Amundsen Sea: a time series from 1994 to 2020
Andrew N. Hennig, David A. Mucciarone, Stanley S. Jacobs, Richard A. Mortlock, and Robert B. Dunbar
The Cryosphere, 18, 791–818, https://doi.org/10.5194/tc-18-791-2024,https://doi.org/10.5194/tc-18-791-2024, 2024
Short summary
Evaporative controls on Antarctic precipitation: an ECHAM6 model study using innovative water tracer diagnostics
Qinggang Gao, Louise C. Sime, Alison J. McLaren, Thomas J. Bracegirdle, Emilie Capron, Rachael H. Rhodes, Hans Christian Steen-Larsen, Xiaoxu Shi, and Martin Werner
The Cryosphere, 18, 683–703, https://doi.org/10.5194/tc-18-683-2024,https://doi.org/10.5194/tc-18-683-2024, 2024
Short summary

Cited articles

Bell, R. E., Ferraccioli, F., Creyts, T. T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M., and Wolovick, M.: Widespread Persistent Thickening of the East Antarctic Ice Sheet by Freezing from the Base, Science, 331, 1592–1595, https://doi.org/10.1126/science.1200109, 2011. 
Carson, C. J., McLaren, S., Roberts, J. L., Boger, S. D., and Blankenship, D. D.: Hot rocks in a cold place: high subglacial heat flow in East Antarctica, J. Geol. Soc., 171, 9–12, https://doi.org/10.1144/jgs2013-030, 2014. 
Chung, D. H. and Kwon, T. H.: Invariant-based optimal fitting closure approximation for the numerical prediction of flow-induced fiber orientation, J. Rheol., 46, 169–194, 2002. 
Cui, X., Sun, B., Tian, G., Tang, X., Zhang, X., Jiang, Y., Guo, J., and Li, X.: Ice radar investigation at Dome A, East Antarctica:Ice thickness and subglacial topography, Chinese Sci. Bull., 55, 425–431, https://doi.org/10.1007/s11434-009-0546-z, 2010. 
Download
Short summary
We investigate the age–depth profile to be expected of the ongoing deep ice coring at Kunlun station, Dome A, using the depth-varying anisotropic fabric suggested by the recent polarimetric measurements in a three-dimensional, thermo-mechanically coupled full-Stokes model. The model results suggest that the age of the deep ice at Kunlun is 649–831 ka, and there are large regions where 1-million-year-old ice may be found 200 m above the bedrock within 5–6 km of the Kunlun station.