Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 12, issue 6 | Copyright
The Cryosphere, 12, 2099-2108, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Jun 2018

Research article | 19 Jun 2018

Autonomous ice sheet surface mass balance measurements from cosmic rays

Ian M. Howat1,2, Santiago de la Peña1, Darin Desilets3, and Gary Womack3 Ian M. Howat et al.
  • 1Byrd Polar & Climate Research Center, Ohio State University, Columbus, OH, USA
  • 2School of Earth Sciences, Ohio State University, Columbus, OH, USA
  • 3Hydroinnova LLC, Albuquerque, NM, USA

Abstract. Observations of mass accumulation and net balance on glaciers and ice sheets are sparse due to the difficulty of acquiring manual measurements and the lack of a reliable remote-sensing method. The methodology for recording the water-equivalent accumulation of snowfall using the attenuation of fast neutrons generated by cosmic ray impacts was developed in the 1970s and has been employed in large-network snowpack monitoring but has yet to be applied to glaciers and ice sheets. In order to assess this potential method, we installed a cosmic ray neutron-sensing device at Summit Camp, Greenland, in April 2016. Hourly neutron count was recorded for  ∼ 24 months and converted to water-equivalent thickness after correcting for variability in atmospheric pressure and incoming cosmic radiation. The daily accumulation estimates are analysed for noise level and compared to manual surface core and snow stake network measurements. Based on measurements of up to 56cm of water equivalent, we estimate the sensor's precision to be better than 1mm for water-equivalent thicknesses less than 14cm and better than 1cm in up to 140cm, or approximately 0.7%. Our observations agree with the surface core measurements to within their respective errors, with temporary biases that are explained by snow drifting, as supported by comparison to the snow stake network. Our observations reveal large temporal variability in accumulation on daily to monthly scales, but with similar annual totals. Based on these results, cosmic ray sensing represents a potentially transformative method for acquiring continuous in situ measurements of mass accumulation that may add constraint to glacier and ice sheet mass balance estimates from meteorological models and remote sensing.

Publications Copernicus
Short summary
In this paper we present the first application of cosmic ray neutron sensing for continuously measuring in situ accumulation on an ice sheet. We validate these results with manual snow coring and snow stake measurements, showing that the cosmic ray observations are of similar if not better accuracy. We also present our observations of variability in accumulation over 24 months at Summit Camp, Greenland. We conclude that cosmic ray sensing has a high potential for measuring surface mass balance.
In this paper we present the first application of cosmic ray neutron sensing for continuously...