Berliner, L. M.: Hierarchical Bayesian Time Series Models, in: Maximum Entropy
and Bayesian Methods, edited by: Hanson, K. M. and Silver, R. N.,
Springer Netherlands, Dordrecht, 15–22, 1996. a

Berliner, L. M.: Physical-statistical modeling in geophysics, J.
Geophys. Res.-Atmos., 108, 8776, https://doi.org/10.1029/2002JD002865, 2003. a, b

Berliner, L. M., Jezek, K., Cressie, N., Kim, Y., Lam, C. Q., and
van der Veen, C. J.: Modeling dynamic controls on ice streams: a Bayesian
statistical approach, J. Glaciol., 54, 705–714,
https://doi.org/10.3189/002214308786570917, 2008. a

Brinkerhoff, D. J., Aschwanden, A., and Truffer, M.: Bayesian Inference of
Subglacial Topography Using Mass Conservation, Front. Earth Sci., 4,
8, https://doi.org/10.3389/feart.2016.00008, 2016. a

Brynjarsdóttir, J. and O'Hagan, A.: Learning about physical parameters: the
importance of model discrepancy, Inverse Probl., 30, 114007, https://doi.org/10.1088/0266-5611/30/11/114007, 2014. a, b, c

Bueler, E., Lingle, C. S., Kallen-Brown, J. A., Covey, D. N., and
Bowman, L. N.: Exact solutions and verification of numerical models for
isothermal ice sheets, J. Glaciol., 51, 291–306,
https://doi.org/10.3189/172756505781829449, 2005. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u

Calderhead, B., Girolami, M., and Lawrence, N. D.: Accelerating Bayesian
Inference over Nonlinear Differential Equations with Gaussian Processes, in:
Proceedings of the 21st International Conference on Neural Information
Processing Systems, NIPS'08, Curran Associates Inc., 217–224, USA,
ISBN: 978-1-6056-0-949-2 , 2008. a

Cressie, N. and Wikle, C. K.: Statistics for spatio-temporal data, John Wiley
& Sons, 2015. a, b, c

Cuffey, K. M. and Paterson, W.: The Physics of Glaciers, 4 edn., Academic Press, 2010. a, b

Flowers, G. E., Marshall, S. J., Björnsson, H., and Clarke, G. K.:
Sensitivity of Vatnajökull ice cap hydrology and dynamics to climate
warming over the next 2 centuries, J. Geophys. Res.-Earth, 110, F02011, https://doi.org/10.1029/2004JF000200, 2005. a

Fowler, A. C. and Larson, D. A.: On the Flow of Polythermal Glaciers. I. Model
and Preliminary Analysis, Proc. R. Soc. Lon. Ser.-A, 363, 217–242, 1978. a

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin,
D. B.: Bayesian data analysis, 3rd edn., Chapman & Hall/CRC, 2013. a

Glen, J.: The flow law of ice: A discussion of the assumptions made in glacier
theory, their experimental foundations and consequences, IASH Publ., 47,
171–183, 1958. a

Glen, J. W.: The Creep of Polycrystalline Ice, Proc. R. Soc. Lon. Ser.-A, 228, 519–538, 1955. a

Hooten, M. B., Leeds, W. B., Fiechter, J., and Wikle, C. K.: Assessing
First-Order Emulator Inference for Physical Parameters in Nonlinear
Mechanistic Models, J. Agr. Biol. Envir. St., 16, 475–494, https://doi.org/10.1007/s13253-011-0073-7, 2011. a, b

Hudson, J.: Numerical Techniques for Conservation Laws with Source Terms, Tech.
rep., Engineering and Physical Science Research Council, 1998. a, b

Hutter, K.: A mathematical model of polythermal glaciers and ice sheets,
Geophys. Astro. Fluid, 21, 201–224,
https://doi.org/10.1080/03091928208209013, 1982. a

Hutter, K.: Theoretical Glaciology: Material Science of Ice and the Mechanics
of Glaciers and Ice Sheets, Mathematical Approaches to Geophysics, Springer, 548 pp., 1983. a

Isaac, T., Petra, N., Stadler, G., and Ghattas, O.: Scalable and efficient
algorithms for the propagation of uncertainty from data through inference to
prediction for large-scale problems, with application to flow of the
Antarctic ice sheet, J. Comput. Phys., 296, 348–368,
https://doi.org/10.1016/j.jcp.2015.04.047, 2015. a

Jarosch, A. H., Schoof, C. G., and Anslow, F. S.: Restoring mass
conservation to shallow ice flow models over complex terrain, The
Cryosphere, 7, 229–240, https://doi.org/10.5194/tc-7-229-2013,
2013. a, b, c

Minchew, B., Simons, M., Hensley, S., Björnsson, H., and
Pálsson, F.: Early melt season velocity fields of Langjökull
and Hofsjökull, central Iceland, J. Glaciol., 61, 253–266,
2015. a

Owhadi, H. and Scovel, C.: Universal Scalable Robust Solvers
from Computational Information Games and fast eigenspace adapted
Multiresolution Analysis, ArXiv e-prints, 142 pp.,
arXiv:1703.10761, 2017. a

Payne, A. J., Huybrechts, P., Abe-Ouchi, A., Calov, R., Fastook,
J. L., Greve, R., Marshall, S. J., Marsiat, I., Ritz, C., Tarasov,
L., and Thomassen, M. P. A.: Results from the EISMINT model
intercomparison: the effects of thermomechanical coupling, J.
Glaciol., 46, 227–238, 2000. a, b

Pralong, M. R. and Gudmundsson, G. H.: Bayesian estimation of
basal conditions on Rutford Ice Stream, West Antarctica, from
surface data, J. Glaciol., 57, 315–324,
https://doi.org/10.3189/002214311796406004, 2011. a

Rue, H.: Fast sampling of Gaussian Markov random fields, J. Roy.
Stat. Soc. B Met., 63, 325–338, 2001. a

Rue, H., Riebler, A., Sørbye, S. H., Illian, J. B.,
Simpson, D. P., and Lindgren, F. K.: Bayesian Computing with
INLA: A Review, Annu. Rev. Stat. Appl., 4, 395–421,
https://doi.org/10.1146/annurev-statistics-060116-054045, 2017. a

Stan Development Team: RStan: the R interface to Stan, r
package version 2.17.3, available at: http://mc-stan.org/ (last access: 1 April 2018),
2018. a

van der Veen, C.: Fundamentals of Glaicer Dynamics, 2nd edn., CRC
Press, 2017. a

Wasserman, L.: All of statistics: a concise course in statistical
inference, Springer Science & Business Media, 2013.
a

Weertman, J.: The theory of glacier sliding, J. Glaciol., 5,
287–303, https://doi.org/10.1017/S0022143000029038, 1964. a

Wikle, C. K.: Hierarchical Models for Uncertainty Quantification: An
Overview, Springer International Publishing, Cham, 1–26,
https://doi.org/10.1007/978-3-319-11259-6_4-1, 2016. a, b, c