Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 12, issue 9 | Copyright
The Cryosphere, 12, 2821-2829, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 04 Sep 2018

Research article | 04 Sep 2018

Persistent tracers of historic ice flow in glacial stratigraphy near Kamb Ice Stream, West Antarctica

Nicholas Holschuh1, Knut Christianson1, Howard Conway1, Robert W. Jacobel2, and Brian C. Welch2 Nicholas Holschuh et al.
  • 1Department of Earth and Space Sciences, University of Washington, Johnson Hall Rm-070, P.O. Box 351310, 4000 15th Avenue NE, Seattle, WA 98195, USA
  • 2Department of Physics, St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA

Abstract. Variations in properties controlling ice flow (e.g., topography, accumulation rate, basal friction) are recorded by structures in glacial stratigraphy. When anomalies that disturb the stratigraphy are fixed in space, the structures they produce advect away from the source and can be used to trace flow pathways and reconstruct ice-flow patterns of the past. Here we provide an example of one of these persistent tracers: a prominent unconformity in the glacial layering that originates at Mt. Resnik, part of a subglacial volcanic complex near Kamb Ice Stream in central West Antarctica. The unconformity records a change in the regional thinning behavior seemingly coincident ( ∼ 3440±117a) with stabilization of grounding-line retreat in the Ross Sea Embayment. We argue that this feature records both the flow and thinning history far upstream of the Ross Sea grounding line, indicating a limited influence of observed ice-stream stagnation cycles on large-scale ice-sheet routing over the last  ∼ 5700 years.

Publications Copernicus
Short summary
Models of the Antarctic Sheet are tuned using observations of historic ice-sheet behavior, but we have few observations that tell us how inland ice behaved over the last few millennia. A 2 km tall volcano sitting under the ice sheet has left a record in the ice as it flows by, and that feature provides unique insight into the regional ice-flow history. It indicates that observed, rapid changes in West Antarctica flow dynamics have not affected the continental interior over the last 5700 years.
Models of the Antarctic Sheet are tuned using observations of historic ice-sheet behavior, but...