Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC | Volume 12, issue 9
The Cryosphere, 12, 2855–2868, 2018
https://doi.org/10.5194/tc-12-2855-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 12, 2855–2868, 2018
https://doi.org/10.5194/tc-12-2855-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 06 Sep 2018

Research article | 06 Sep 2018

Investigating future changes in the volume budget of the Arctic sea ice in a coupled climate model

Ann Keen and Ed Blockley

Related authors

An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models
Ann Keen, Ed Blockley, David Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-314,https://doi.org/10.5194/tc-2019-314, 2020
Preprint under review for TC
Short summary
The sea ice model component of HadGEM3-GC3.1
Jeff K. Ridley, Edward W. Blockley, Ann B. Keen, Jamie G. L. Rae, Alex E. West, and David Schroeder
Geosci. Model Dev., 11, 713–723, https://doi.org/10.5194/gmd-11-713-2018,https://doi.org/10.5194/gmd-11-713-2018, 2018
Short summary

Related subject area

Discipline: Sea ice | Subject: Numerical Modelling
Feature-based comparison of sea ice deformation in lead-permitting sea ice simulations
Nils Hutter and Martin Losch
The Cryosphere, 14, 93–113, https://doi.org/10.5194/tc-14-93-2020,https://doi.org/10.5194/tc-14-93-2020, 2020
Short summary
Wave energy attenuation in fields of colliding ice floes – Part 1: Discrete-element modelling of dissipation due to ice–water drag
Agnieszka Herman, Sukun Cheng, and Hayley H. Shen
The Cryosphere, 13, 2887–2900, https://doi.org/10.5194/tc-13-2887-2019,https://doi.org/10.5194/tc-13-2887-2019, 2019
Short summary
Validation of the sea ice surface albedo scheme of the regional climate model HIRHAM–NAOSIM using aircraft measurements during the ACLOUD/PASCAL campaigns
Evelyn Jäkel, Johannes Stapf, Manfred Wendisch, Marcel Nicolaus, Wolfgang Dorn, and Annette Rinke
The Cryosphere, 13, 1695–1708, https://doi.org/10.5194/tc-13-1695-2019,https://doi.org/10.5194/tc-13-1695-2019, 2019
Short summary
Simulating intersection angles between conjugate faults in sea ice with different viscous–plastic rheologies
Damien Ringeisen, Martin Losch, L. Bruno Tremblay, and Nils Hutter
The Cryosphere, 13, 1167–1186, https://doi.org/10.5194/tc-13-1167-2019,https://doi.org/10.5194/tc-13-1167-2019, 2019
Short summary
IcePAC – a probabilistic tool to study sea ice spatio-temporal dynamics: application to the Hudson Bay area
Charles Gignac, Monique Bernier, and Karem Chokmani
The Cryosphere, 13, 451–468, https://doi.org/10.5194/tc-13-451-2019,https://doi.org/10.5194/tc-13-451-2019, 2019
Short summary

Cited articles

Bathiany, S., Notz, D., Mauritsen, T., Raedel, G., and Brovkin, V.: On the Potential for Abrupt Arctic Winter Sea ice Loss, J. Climate, 29, 2703–2719, https://doi.org/10.1175/jcli-d-15-0466.1, 2016. 
Burgard, C. and Notz, D.: Drivers of Arctic Ocean warming in CMIP5 models, Geophys. Res. Lett., 44, 4263–4271, https://doi.org/10.1002/2016gl072342, 2017. 
Curry, J. A., Schramm, J. L., Perovich, D. K., and Pinto, J. O.: Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations, J. Geophys. Res., 106, 15345–15355, https://doi.org/10.1029/2000jd900311, 2001. 
English, J. M., Gettelman, A., and Henderson, G. R.: Arctic Radiative Fluxes: Present-Day Biases and Future Projections in CMIP5 Models, J. Climate, 28, 6019–6038, https://doi.org/10.1175/jcli-d-14-00801.1, 2015. 
Publications Copernicus
Download
Short summary
As the climate warms during the 21st century, our model shows extra melting at the top and the base of the Arctic sea ice. The reducing ice cover affects the impact these processes have on the sea ice volume budget, where the largest individual change is a reduction in the amount of growth at the base of existing ice. Using different forcing scenarios we show that, for this model, changes in the volume budget depend on the evolving ice area but not on the speed at which the ice area declines.
As the climate warms during the 21st century, our model shows extra melting at the top and the...
Citation