Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 12, issue 9 | Copyright
The Cryosphere, 12, 2923-2939, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 14 Sep 2018

Research article | 14 Sep 2018

Investigation of a wind-packing event in Queen Maud Land, Antarctica

Christian Gabriel Sommer1,2, Nander Wever1,2,3, Charles Fierz1, and Michael Lehning1,2 Christian Gabriel Sommer et al.
  • 1WSL Institute for Snow and Avalanche Research SLF, 7260 Davos, Switzerland
  • 2CRYOS, School of Architecture, Civil and Environmental Engineering, EPFL, 1015 Lausanne, Switzerland
  • 3Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA

Abstract. Surface snow in polar and mountainous regions is often mobile and this mobility influences surface mass balance and isotopic composition before final deposition, which is poorly understood thus far. In December 2016 and January 2017, during a field campaign in Queen Maud Land, Antarctica, a snowfall and subsequent drifting snow events were recorded by meteorological and drifting snow stations. Associated small-scale topography changes and snow hardness changes were measured by terrestrial laser scanning and with a SnowMicroPen. The polar field measurements show that drifting snow is necessary for wind packing and thereby confirm previous findings from wind tunnel experiments. However, the snow hardness in Antarctica was significantly higher than what was achieved in the wind tunnel. This is most likely due to higher wind speeds and more intense saltation in the natural environment. As in the wind tunnel, no influence of time at a scale of days was observed on the hardness. This suggests that time and sintering are not the dominating processes in wind packing but that the impact compaction at the moment of deposition may be more important. Furthermore, it is quantitatively demonstrated how the reorganization of fresh snow into barchan dunes during subsequent drifting snow events is accompanied by significant increases in surface hardness at all locations on the dune. However, with the available data, the hardness variability on the dune could not be explained satisfactorily. In particular and unlike in the wind tunnel, there was no correlation between the hardness and the wind exposure parameter Sx. This is most likely because the measurements of hardness and the wind exposure situation were not simultaneous. This shows that highly temporally resolved snow depth data are necessary to investigate wind packing in more detail. These results form an important step in understanding how drifting snow links precipitation to deposition via snow hardening.

Download & links
Publications Copernicus
Short summary
Wind packing is how wind produces hard crusts at the surface of the snowpack. This is relevant for the local mass balance in polar regions. However, not much is known about this process and it is difficult to capture its high spatial and temporal variability. A wind-packing event was measured in Antarctica. It could be quantified how drifting snow leads to wind packing and generates barchan dunes. The documentation of these deposition dynamics is an important step in understanding polar snow.
Wind packing is how wind produces hard crusts at the surface of the snowpack. This is relevant...