Articles | Volume 12, issue 9
https://doi.org/10.5194/tc-12-2981-2018
https://doi.org/10.5194/tc-12-2981-2018
Research article
 | 
21 Sep 2018
Research article |  | 21 Sep 2018

Seasonal mass variations show timing and magnitude of meltwater storage in the Greenland Ice Sheet

Jiangjun Ran, Miren Vizcaino, Pavel Ditmar, Michiel R. van den Broeke, Twila Moon, Christian R. Steger, Ellyn M. Enderlin, Bert Wouters, Brice Noël, Catharina H. Reijmer, Roland Klees, Min Zhong, Lin Liu, and Xavier Fettweis

Related authors

Characterizing Southeast Greenland fjord surface ice and freshwater flux to support biological applications
Twila A. Moon, Benjamin Cohen, Taryn E. Black, Kristin L. Laidre, Harry Stern, and Ian Joughin
EGUsphere, https://doi.org/10.5194/egusphere-2024-184,https://doi.org/10.5194/egusphere-2024-184, 2024
Short summary
TPRoGI: a comprehensive rock glacier inventory for the Tibetan Plateau using deep learning
Zhangyu Sun, Yan Hu, Adina Racoviteanu, Lin Liu, Stephan Harrison, Xiaowen Wang, Jiaxin Cai, Xin Guo, Yujun He, and Hailun Yuan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-28,https://doi.org/10.5194/essd-2024-28, 2024
Preprint under review for ESSD
Short summary
Automated snow cover detection on mountain glaciers using space-borne imagery
Rainey Aberle, Ellyn Enderlin, Shad O'Neel, Caitlyn Florentine, Louis Sass, Adam Dickson, Hans-Peter Marshall, and Alejandro Flores
EGUsphere, https://doi.org/10.5194/egusphere-2024-548,https://doi.org/10.5194/egusphere-2024-548, 2024
Short summary
Improved records of glacier flow instabilities using customized NASA autoRIFT applied to PlanetScope imagery
Jukes Liu, Madeline Gendreau, Ellyn Mary Enderlin, and Rainey Aberle
EGUsphere, https://doi.org/10.5194/egusphere-2024-374,https://doi.org/10.5194/egusphere-2024-374, 2024
Short summary
Modelling snowpack on ice surfaces with the ORCHIDEE land surface model: Application to the Greenland ice sheet
Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, Nina Raoult, and Xavier Fettweis
EGUsphere, https://doi.org/10.5194/egusphere-2024-285,https://doi.org/10.5194/egusphere-2024-285, 2024
Short summary

Related subject area

Discipline: Ice sheets | Subject: Greenland
Subglacial valleys preserved in the highlands of south and east Greenland record restricted ice extent during past warmer climates
Guy J. G. Paxman, Stewart S. R. Jamieson, Aisling M. Dolan, and Michael J. Bentley
The Cryosphere, 18, 1467–1493, https://doi.org/10.5194/tc-18-1467-2024,https://doi.org/10.5194/tc-18-1467-2024, 2024
Short summary
Coupling MAR (Modèle Atmosphérique Régional) with PISM (Parallel Ice Sheet Model) mitigates the positive melt–elevation feedback
Alison Delhasse, Johanna Beckmann, Christoph Kittel, and Xavier Fettweis
The Cryosphere, 18, 633–651, https://doi.org/10.5194/tc-18-633-2024,https://doi.org/10.5194/tc-18-633-2024, 2024
Short summary
Cloud- and ice-albedo feedbacks drive greater Greenland Ice Sheet sensitivity to warming in CMIP6 than in CMIP5
Idunn Aamnes Mostue, Stefan Hofer, Trude Storelvmo, and Xavier Fettweis
The Cryosphere, 18, 475–488, https://doi.org/10.5194/tc-18-475-2024,https://doi.org/10.5194/tc-18-475-2024, 2024
Short summary
Evaluating different geothermal heat-flow maps as basal boundary conditions during spin-up of the Greenland ice sheet
Tong Zhang, William Colgan, Agnes Wansing, Anja Løkkegaard, Gunter Leguy, William H. Lipscomb, and Cunde Xiao
The Cryosphere, 18, 387–402, https://doi.org/10.5194/tc-18-387-2024,https://doi.org/10.5194/tc-18-387-2024, 2024
Short summary
Seasonal evolution of the supraglacial drainage network at Humboldt Glacier, northern Greenland, between 2016 and 2020
Lauren D. Rawlins, David M. Rippin, Andrew J. Sole, Stephen J. Livingstone, and Kang Yang
The Cryosphere, 17, 4729–4750, https://doi.org/10.5194/tc-17-4729-2023,https://doi.org/10.5194/tc-17-4729-2023, 2023
Short summary

Cited articles

A, G., Wahr, J., and Zhong, S.: Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada, Geophys. J. Inte., 192, 557–572, https://doi.org/10.1093/gji/ggs030, 2013. a
Ahlstrøm, A. P., Andersen, S. B., Andersen, M. L., Machguth, H., Nick, F. M., Joughin, I., Reijmer, C. H., van de Wal, R. S. W., Merryman Boncori, J. P., Box, J. E., Citterio, M., van As, D., Fausto, R. S., and Hubbard, A.: Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments, Earth Syst. Sci. Data, 5, 277–287, https://doi.org/10.5194/essd-5-277-2013, 2013. a
Alexander, P. M., Tedesco, M., Schlegel, N.-J., Luthcke, S. B., Fettweis, X., and Larour, E.: Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003–2012), The Cryosphere, 10, 1259–1277, https://doi.org/10.5194/tc-10-1259-2016, 2016. a, b, c, d
Baur, O. and Sneeuw, N.: Assessing Greenland ice mass loss by means of point-mass modeling: A viable methodology, J. Geodesy, 85, 607–615, 2011. a
Chandler, D., Wadham, J., Lis, G., Cowton, T., Sole, A., Bartholomew, I., Telling, J., Nienow, P., Bagshaw, E., Mair, D., Vinen, S., and Hubbard, A.: Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers, Nat. Geosci., 6, 195–198, 2013. a
Download
Short summary
To accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry, surface mass balance, and ice discharge to analyze the mass budget of Greenland at various temporal scales. This study, for the first time, suggests the existence of a substantial meltwater storage during summer, with a peak value of 80–120 Gt in July. We highlight its importance for understanding ice sheet mass variability