Articles | Volume 12, issue 9
https://doi.org/10.5194/tc-12-3001-2018
https://doi.org/10.5194/tc-12-3001-2018
Research article
 | 
21 Sep 2018
Research article |  | 21 Sep 2018

Modelling the late Holocene and future evolution of Monacobreen, northern Spitsbergen

Johannes Oerlemans

Related authors

Modelling the mass budget and future evolution of Tunabreen, central Spitsbergen
Johannes Oerlemans, Jack Kohler, and Adrian Luckman
The Cryosphere, 16, 2115–2126, https://doi.org/10.5194/tc-16-2115-2022,https://doi.org/10.5194/tc-16-2115-2022, 2022
Short summary
Brief communication: Growth and decay of an ice stupa in alpine conditions – a simple model driven by energy-flux observations over a glacier surface
Johannes Oerlemans, Suryanarayanan Balasubramanian, Conradin Clavuot, and Felix Keller
The Cryosphere, 15, 3007–3012, https://doi.org/10.5194/tc-15-3007-2021,https://doi.org/10.5194/tc-15-3007-2021, 2021
Short summary
Numerical simulations of glacier evolution performed using flow-line models of varying complexity
Antonija Rimac, Sharon van Geffen, and Johannes Oerlemans
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-67,https://doi.org/10.5194/gmd-2017-67, 2017
Revised manuscript not accepted
Short summary
A model study of Abrahamsenbreen, a surging glacier in northern Spitsbergen
J. Oerlemans and W. J. J. van Pelt
The Cryosphere, 9, 767–779, https://doi.org/10.5194/tc-9-767-2015,https://doi.org/10.5194/tc-9-767-2015, 2015
Short summary
Self-regulation of ice flow varies across the ablation area in south-west Greenland
R. S. W. van de Wal, C. J. P. P. Smeets, W. Boot, M. Stoffelen, R. van Kampen, S. H. Doyle, F. Wilhelms, M. R. van den Broeke, C. H. Reijmer, J. Oerlemans, and A. Hubbard
The Cryosphere, 9, 603–611, https://doi.org/10.5194/tc-9-603-2015,https://doi.org/10.5194/tc-9-603-2015, 2015
Short summary

Related subject area

Discipline: Glaciers | Subject: Paleo-Glaciology (including Former Ice Reconstructions)
Timing and climatic-driven mechanisms of glacier advances in Bhutanese Himalaya during the Little Ice Age
Weilin Yang, Yingkui Li, Gengnian Liu, and Wenchao Chu
The Cryosphere, 16, 3739–3752, https://doi.org/10.5194/tc-16-3739-2022,https://doi.org/10.5194/tc-16-3739-2022, 2022
Short summary
The Holocene dynamics of Ryder Glacier and ice tongue in north Greenland
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021,https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Holocene thinning of Darwin and Hatherton glaciers, Antarctica, and implications for grounding-line retreat in the Ross Sea
Trevor R. Hillebrand, John O. Stone, Michelle Koutnik, Courtney King, Howard Conway, Brenda Hall, Keir Nichols, Brent Goehring, and Mette K. Gillespie
The Cryosphere, 15, 3329–3354, https://doi.org/10.5194/tc-15-3329-2021,https://doi.org/10.5194/tc-15-3329-2021, 2021
Short summary
Understanding drivers of glacier-length variability over the last millennium
Alan Huston, Nicholas Siler, Gerard H. Roe, Erin Pettit, and Nathan J. Steiger
The Cryosphere, 15, 1645–1662, https://doi.org/10.5194/tc-15-1645-2021,https://doi.org/10.5194/tc-15-1645-2021, 2021
Short summary
Central Himalayan tree-ring isotopes reveal increasing regional heterogeneity and enhancement in ice mass loss since the 1960s
Nilendu Singh, Mayank Shekhar, Jayendra Singh, Anil K. Gupta, Achim Bräuning, Christoph Mayr, and Mohit Singhal
The Cryosphere, 15, 95–112, https://doi.org/10.5194/tc-15-95-2021,https://doi.org/10.5194/tc-15-95-2021, 2021
Short summary

Cited articles

Axford, Y., Levy, L. B., Kelly, M. A., Francis, D. R., Hall, B. L., Langdon, P. G., and Lowell, T. V.: Timing and magnitude of early to middle Holocene warming in East Greenland inferred from chironmids, Boreas, 64, 678–687, https://doi.org/10.1111/bor.12247, 2017. 
Benn, D. I., Hulton, N. R. J., and Mottram, R. H.: “Calving laws”, sliding laws' and the stability of tidewater glaciers, Ann. Glaciol., 46, 123–130, 2007. 
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last 10 million years, Quaternary Sci. Rev., 10, 297–317, 1991. 
Blaszczyk M., Jania, J. A., and Hagen, J. O.: Tidewater glaciers of Svalbard: Recent changes and estimates of calving fluxes, Pol. Polar Res., 30, 85–142, 2009. 
Björnsson, H.: Scales and rates of glacial sediment removal: a 20 km long, 300 m deep trench created beneath Breidamerkurjökull during the Little Ice Age, Ann. Glaciol., 22, 141–146, 1996. 
Download
Short summary
Monacobreen is a 40 km long surge-type tidewater glacier in northern Spitsbergen. The front is retreating fast. Calculations with a glacier model predict that due to future climate warming this glacier will have lost 20 to 40 % of its volume by the year 2100. Because of the glacier's memory, much of the response will come after 2100, even if the climatic conditions would stabilize.