Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 12, issue 9 | Copyright
The Cryosphere, 12, 3045-3065, 2018
https://doi.org/10.5194/tc-12-3045-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 26 Sep 2018

Research article | 26 Sep 2018

Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland

Andrew G. Williamson1, Alison F. Banwell1,2, Ian C. Willis1,2, and Neil S. Arnold1 Andrew G. Williamson et al.
  • 1Scott Polar Research Institute, University of Cambridge, Cambridge, UK
  • 2Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA

Abstract. Remote sensing is commonly used to monitor supraglacial lakes on the Greenland Ice Sheet (GrIS); however, most satellite records must trade off higher spatial resolution for higher temporal resolution (e.g. MODIS) or vice versa (e.g. Landsat). Here, we overcome this issue by developing and applying a dual-sensor method that can monitor changes to lake areas and volumes at high spatial resolution (10–30m) with a frequent revisit time ( ∼ 3 days). We achieve this by mosaicking imagery from the Landsat 8 Operational Land Imager (OLI) with imagery from the recently launched Sentinel-2 Multispectral Instrument (MSI) for a  ∼ 12000km2 area of West Greenland in the 2016 melt season. First, we validate a physically based method for calculating lake depths with Sentinel-2 by comparing measurements against those derived from the available contemporaneous Landsat 8 imagery; we find close correspondence between the two sets of values (R2 = 0.841; RMSE = 0.555m). This provides us with the methodological basis for automatically calculating lake areas, depths, and volumes from all available Landsat 8 and Sentinel-2 images. These automatic methods are incorporated into an algorithm for Fully Automated Supraglacial lake Tracking at Enhanced Resolution (FASTER). The FASTER algorithm produces time series showing lake evolution during the 2016 melt season, including automated rapid ( ≤ 4 day) lake-drainage identification. With the dual Sentinel-2–Landsat 8 record, we identify 184 rapidly draining lakes, many more than identified with either imagery collection alone (93 with Sentinel-2; 66 with Landsat 8), due to their inferior temporal resolution, or would be possible with MODIS, due to its omission of small lakes  < 0.125km2. Finally, we estimate the water volumes drained into the GrIS during rapid-lake-drainage events and, by analysing downscaled regional climate-model (RACMO2.3p2) run-off data, the water quantity that enters the GrIS via the moulins opened by such events. We find that during the lake-drainage events alone, the water drained by small lakes ( < 0.125km2) is only 5.1% of the total water volume drained by all lakes. However, considering the total water volume entering the GrIS after lake drainage, the moulins opened by small lakes deliver 61.5% of the total water volume delivered via the moulins opened by large and small lakes; this is because there are more small lakes, allowing more moulins to open, and because small lakes are found at lower elevations than large lakes, where run-off is higher. These findings suggest that small lakes should be included in future remote-sensing and modelling work.

Download & links
Publications Copernicus
Download
Short summary
A new approach is presented for automatically monitoring changes to area and volume of surface lakes on the Greenland Ice Sheet using Landsat 8 and Sentinel-2 satellite data. The dual-satellite record improves on previous work since it tracks changes to more lakes (including small ones), identifies more lake-drainage events, and has higher precision. The results also show that small lakes are important in ice-sheet hydrology as they route more surface run-off into the ice sheet than large lakes.
A new approach is presented for automatically monitoring changes to area and volume of surface...
Citation
Share