Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC | Volume 12, issue 10
The Cryosphere, 12, 3123–3136, 2018
https://doi.org/10.5194/tc-12-3123-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 12, 3123–3136, 2018
https://doi.org/10.5194/tc-12-3123-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 02 Oct 2018

Research article | 02 Oct 2018

Velocity increases at Cook Glacier, East Antarctica, linked to ice shelf loss and a subglacial flood event

Bertie W. J. Miles et al.
Related authors  
Simultaneous disintegration of outlet glaciers in Porpoise Bay (Wilkes Land), East Antarctica, driven by sea ice break-up
Bertie W. J. Miles, Chris R. Stokes, and Stewart S. R. Jamieson
The Cryosphere, 11, 427–442, https://doi.org/10.5194/tc-11-427-2017,https://doi.org/10.5194/tc-11-427-2017, 2017
Short summary
Related subject area  
Discipline: Ice sheets | Subject: Antarctic
Thickness of the divide and flank of the West Antarctic Ice Sheet through the last deglaciation
Perry Spector, John Stone, and Brent Goehring
The Cryosphere, 13, 3061–3075, https://doi.org/10.5194/tc-13-3061-2019,https://doi.org/10.5194/tc-13-3061-2019, 2019
Short summary
New Last Glacial Maximum ice thickness constraints for the Weddell Sea Embayment, Antarctica
Keir A. Nichols, Brent M. Goehring, Greg Balco, Joanne S. Johnson, Andrew S. Hein, and Claire Todd
The Cryosphere, 13, 2935–2951, https://doi.org/10.5194/tc-13-2935-2019,https://doi.org/10.5194/tc-13-2935-2019, 2019
Short summary
Calving cycle of the Brunt Ice Shelf, Antarctica, driven by changes in ice shelf geometry
Jan De Rydt, Gudmundur Hilmar Gudmundsson, Thomas Nagler, and Jan Wuite
The Cryosphere, 13, 2771–2787, https://doi.org/10.5194/tc-13-2771-2019,https://doi.org/10.5194/tc-13-2771-2019, 2019
Short summary
Brief communication: A submarine wall protecting the Amundsen Sea intensifies melting of neighboring ice shelves
Özgür Gürses, Vanessa Kolatschek, Qiang Wang, and Christian Bernd Rodehacke
The Cryosphere, 13, 2317–2324, https://doi.org/10.5194/tc-13-2317-2019,https://doi.org/10.5194/tc-13-2317-2019, 2019
Short summary
Modelling the Antarctic Ice Sheet across the mid-Pleistocene transition – implications for Oldest Ice
Johannes Sutter, Hubertus Fischer, Klaus Grosfeld, Nanna B. Karlsson, Thomas Kleiner, Brice Van Liefferinge, and Olaf Eisen
The Cryosphere, 13, 2023–2041, https://doi.org/10.5194/tc-13-2023-2019,https://doi.org/10.5194/tc-13-2023-2019, 2019
Short summary
Cited articles  
Albrecht, T. and Levermann, A.: Spontaneous ice-front retreat caused by disintegration of adjacent ice shelf in Antarctica, Earth Planet. Sc. Lett., 393, 26–30, 2014. 
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Luthi, M. P., and Motyka, R. J.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbrae Greenland, J. Geophys. Res., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010. 
Aoki, S., Kobayashi, R., Rintoul, S. R., Tamura, T., and Kusahara, K.: Changes in water properties and flow regime on the continental shelf off the Adelie/George V Land coast, East Antarctica, after glacier tongue calving, J. Geophys. Res.-Oceans, 122, 6277–6294, 2017. 
Bassis, J. N. and Ma, Y.: Evolution of basal crevasses links ice shelf stability to ocean forcing, Earth Planet. Sc. Lett., 409, 203–211, 2015. 
Beaman, R. J., O'Brien, P. E., Post, A. L., and De Santis, L.: A new high-resolution bathymetry model for the Terre Adelie and George V continental margin, East Antarctica, Antarct. Sci., 23, 95–103, 2011. 
Publications Copernicus
Download
Short summary
Cook Glacier, as one of the largest in East Antarctica, may have made significant contributions to sea level during past warm periods. However, despite its potential importance there have been no long-term observations of its velocity. Here, through estimating velocity and ice front position from satellite imagery and aerial photography we show that there have been large previously undocumented changes in the velocity of Cook Glacier in response to ice shelf loss and a subglacial drainage event.
Cook Glacier, as one of the largest in East Antarctica, may have made significant contributions...
Citation