Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC | Volume 12, issue 10
The Cryosphere, 12, 3373–3382, 2018
https://doi.org/10.5194/tc-12-3373-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 12, 3373–3382, 2018
https://doi.org/10.5194/tc-12-3373-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 26 Oct 2018

Research article | 26 Oct 2018

Arctic climate: changes in sea ice extent outweigh changes in snow cover

Aaron Letterly et al.
Related authors  
Multidecadal Arctic sea ice thickness and volume derived from ice age
Yinghui Liu, Jeffrey R. Key, Xuanji Wang, and Mark Tschudi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-192,https://doi.org/10.5194/tc-2019-192, 2019
Revised manuscript under review for TC
Short summary
Potential faster Arctic sea ice retreat triggered by snowflakes' greenhouse effect
Jui-Lin Frank Li, Mark Richardson, Wei-Liang Lee, Eric Fetzer, Graeme Stephens, Jonathan Jiang, Yulan Hong, Yi-Hui Wang, Jia-Yuh Yu, and Yinghui Liu
The Cryosphere, 13, 969–980, https://doi.org/10.5194/tc-13-969-2019,https://doi.org/10.5194/tc-13-969-2019, 2019
Short summary
Brief communication: Increasing shortwave absorption over the Arctic Ocean is not balanced by trends in the Antarctic
Christian Katlein, Stefan Hendricks, and Jeffrey Key
The Cryosphere, 11, 2111–2116, https://doi.org/10.5194/tc-11-2111-2017,https://doi.org/10.5194/tc-11-2111-2017, 2017
Short summary
Cloud vertical distribution from combined surface and space radar–lidar observations at two Arctic atmospheric observatories
Yinghui Liu, Matthew D. Shupe, Zhien Wang, and Gerald Mace
Atmos. Chem. Phys., 17, 5973–5989, https://doi.org/10.5194/acp-17-5973-2017,https://doi.org/10.5194/acp-17-5973-2017, 2017
Short summary
Related subject area  
Discipline: Sea ice | Subject: Arctic (e.g. Greenland)
Induced surface fluxes: a new framework for attributing Arctic sea ice volume balance biases to specific model errors
Alex West, Mat Collins, Ed Blockley, Jeff Ridley, and Alejandro Bodas-Salcedo
The Cryosphere, 13, 2001–2022, https://doi.org/10.5194/tc-13-2001-2019,https://doi.org/10.5194/tc-13-2001-2019, 2019
Short summary
Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution
Caixin Wang, Robert M. Graham, Keguang Wang, Sebastian Gerland, and Mats A. Granskog
The Cryosphere, 13, 1661–1679, https://doi.org/10.5194/tc-13-1661-2019,https://doi.org/10.5194/tc-13-1661-2019, 2019
Short summary
The recent amplifying seasonal cycle of the Arctic sea ice extent related to the subsurface cooling in the Bering Sea
Xiao-Yi Yang and Guihua Wang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-37,https://doi.org/10.5194/tc-2019-37, 2019
Revised manuscript accepted for TC
Short summary
Benchmark seasonal prediction skill estimates based on regional indices
John E. Walsh, J. Scott Stewart, and Florence Fetterer
The Cryosphere, 13, 1073–1088, https://doi.org/10.5194/tc-13-1073-2019,https://doi.org/10.5194/tc-13-1073-2019, 2019
Short summary
Impact of floe size distribution on seasonal fragmentation and melt of Arctic sea ice
Adam W. Bateson, Daniel L. Feltham, David Schröder, Lucia Hosekova, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-44,https://doi.org/10.5194/tc-2019-44, 2019
Revised manuscript accepted for TC
Short summary
Cited articles  
Cess, R. D. and Potter, G. L.: A Methodology for Understanding and Intercomparing Atmospheric Climate Feedback Processes in General Circulation Models, J. Geophys. Res., 93, 8305–8314, 1988. 
Déry, S. J. and Brown, R. D.: Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback, Geophys. Res. Lett., 34, L22504, https://doi.org/10.1029/2007GL031474, 2007. 
Fernandes, R., Zhao, H., Wang, X., Key, J., Qu, X., and Hall, A.: Controls on Northern Hemisphere snow albedo feedback quantified using satellite Earth observations, Geophys. Res. Lett., 36, L21702, https://doi.org/10.1029/2009GL040057, 2009. 
Flanner, M. M., Shell, K. M., Barlage, M., Perovich, D. K., and Tschudi, M.: Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008, Nat. Geosci., 4, 151–155, https://doi.org/10.1038/ngeo1062, 2011. 
Publications Copernicus
Download
Short summary
Significant reductions in Arctic sea ice and snow cover on Arctic land have led to increases in absorbed solar energy by the surface. Does one play a more important role in Arctic climate change? Using 34 years of satellite data we found that solar energy absorption increased by 10 % over the ocean, which was 3 times greater than over land. Therefore, the decreasing sea ice cover, not changes in terrestrial snow cover, has been the dominant feedback mechanism over the last few decades.
Significant reductions in Arctic sea ice and snow cover on Arctic land have led to increases in...
Citation