Articles | Volume 12, issue 11
https://doi.org/10.5194/tc-12-3535-2018
https://doi.org/10.5194/tc-12-3535-2018
Research article
 | 
13 Nov 2018
Research article |  | 13 Nov 2018

Monitoring snow depth change across a range of landscapes with ephemeral snowpacks using structure from motion applied to lightweight unmanned aerial vehicle videos

Richard Fernandes, Christian Prevost, Francis Canisius, Sylvain G. Leblanc, Matt Maloley, Sarah Oakes, Kiyomi Holman, and Anders Knudby

Related subject area

Discipline: Snow | Subject: Remote Sensing
Towards long-term records of rain-on-snow events across the Arctic from satellite data
Annett Bartsch, Helena Bergstedt, Georg Pointner, Xaver Muri, Kimmo Rautiainen, Leena Leppänen, Kyle Joly, Aleksandr Sokolov, Pavel Orekhov, Dorothee Ehrich, and Eeva Mariatta Soininen
The Cryosphere, 17, 889–915, https://doi.org/10.5194/tc-17-889-2023,https://doi.org/10.5194/tc-17-889-2023, 2023
Short summary
Implementing spatially and temporally varying snow densities into the GlobSnow snow water equivalent retrieval
Pinja Venäläinen, Kari Luojus, Colleen Mortimer, Juha Lemmetyinen, Jouni Pulliainen, Matias Takala, Mikko Moisander, and Lina Zschenderlein
The Cryosphere, 17, 719–736, https://doi.org/10.5194/tc-17-719-2023,https://doi.org/10.5194/tc-17-719-2023, 2023
Short summary
Evaluation of E3SM land model snow simulations over the western United States
Dalei Hao, Gautam Bisht, Karl Rittger, Timbo Stillinger, Edward Bair, Yu Gu, and L. Ruby Leung
The Cryosphere, 17, 673–697, https://doi.org/10.5194/tc-17-673-2023,https://doi.org/10.5194/tc-17-673-2023, 2023
Short summary
Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets
Timbo Stillinger, Karl Rittger, Mark S. Raleigh, Alex Michell, Robert E. Davis, and Edward H. Bair
The Cryosphere, 17, 567–590, https://doi.org/10.5194/tc-17-567-2023,https://doi.org/10.5194/tc-17-567-2023, 2023
Short summary
Snow stratigraphy observations from Operation IceBridge surveys in Alaska using S and C band airborne ultra-wideband FMCW (frequency-modulated continuous wave) radar
Jilu Li, Fernando Rodriguez-Morales, Xavier Fettweis, Oluwanisola Ibikunle, Carl Leuschen, John Paden, Daniel Gomez-Garcia, and Emily Arnold
The Cryosphere, 17, 175–193, https://doi.org/10.5194/tc-17-175-2023,https://doi.org/10.5194/tc-17-175-2023, 2023
Short summary

Cited articles

ANSI/NCSL, Z540-2-1997.: U.S. Guide to the Expression of Uncertainty in Measurement, 1st ed., National Conference of Standards Laboratory, Boulder, USA, 1997. 
Avanzi, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Pagliari, D., Passoni, D., Pinto, L., Piras, M., and Rossi, L.: Measuring the snowpack depth with Unmanned Aerial System photogrammetry: comparison with manual probing and a 3D laser scanning over a sample plot, The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-57, 2017. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, 2005. 
Brown, R., Brasnett, B., and Robinson, D.: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation, Atmos.-Ocean, 41, 1–14, 2003. 
Download
Short summary
The use of lightweight UAV-based surveys of surface elevation to map snow depth and weekly snow depth change was evaluated over five study areas spanning a range of topography and vegetation cover. Snow depth was estimated with an accuracy of better than 10 cm in the vertical and 3 cm in the horizontal. Vegetation in the snow-free elevation map was a major source of error. As a result, the snow depth change between two dates with snow cover was estimated with an accuracy of better than 4 cm.